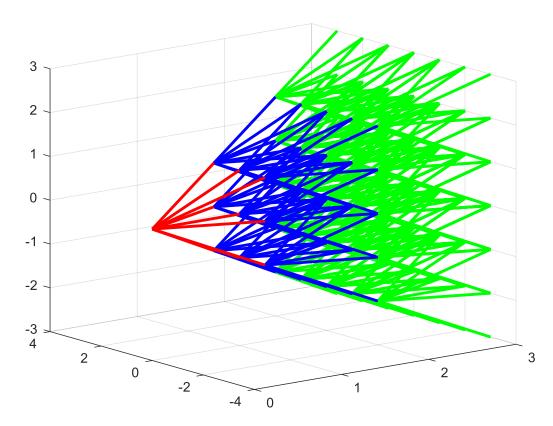
Projekt inovace předmětů – Teorie a praxe dluhopisů Část III

Behaviour of bond's embedded option with regard to credit rating

B. Stádník

University of Economics in Prague

-- Brief ppt summary --

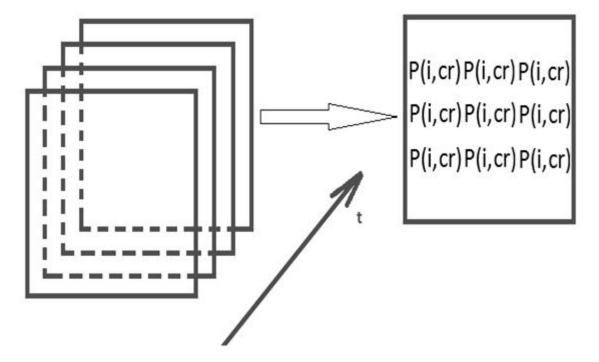


Contribution

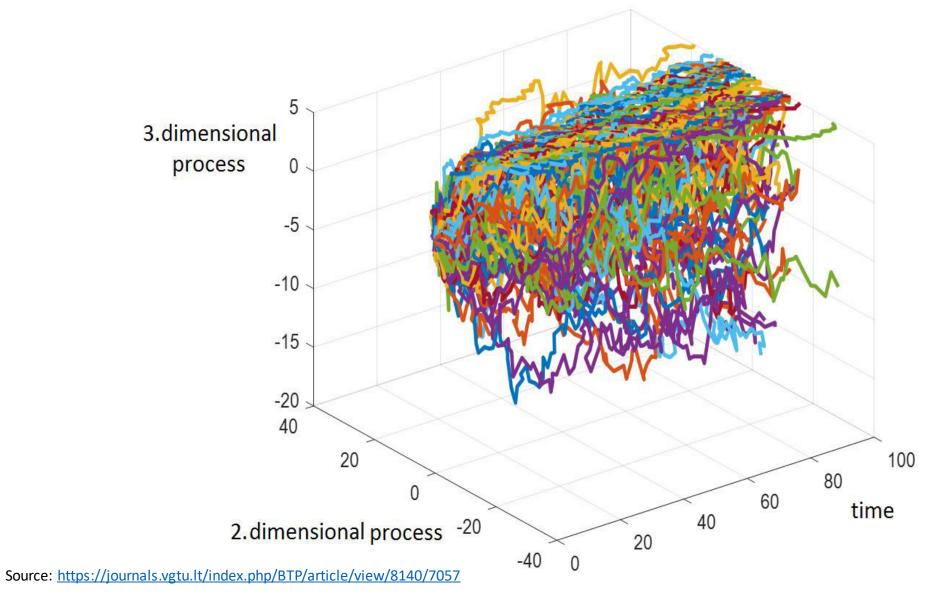
- Conclusions about the <u>dynamics of changes of embedded</u> <u>option premium</u>; represented by the <u>direction and</u> <u>sensitivity</u>; with respect to the changes of credit rating and also risk-free interest rate development.
- 1. To simplify the topic for financial practitioners.

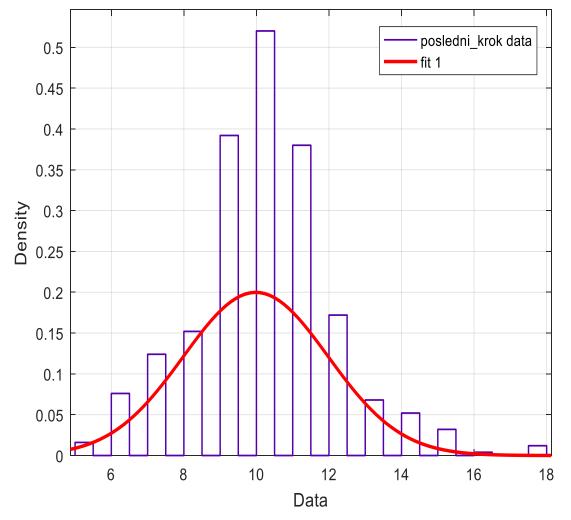
3-D Tree

We are about to consider a 3-dimensional process where the dimensions are:

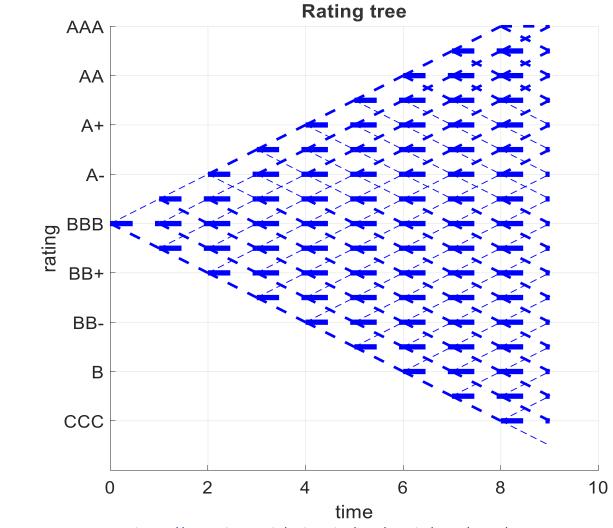

- 1. dimension time
- 2. dimension risk-free interest rates development (Hull-White model)
- dimension rating development proces (derived from transition S&P matrix)

Using risk neutrality concept.

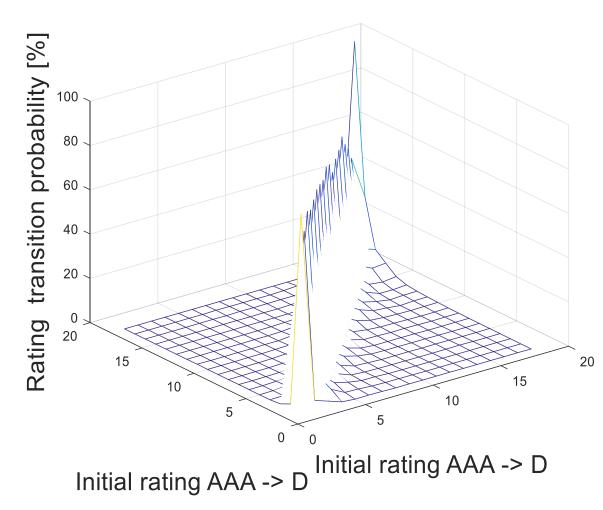

3-D Tree

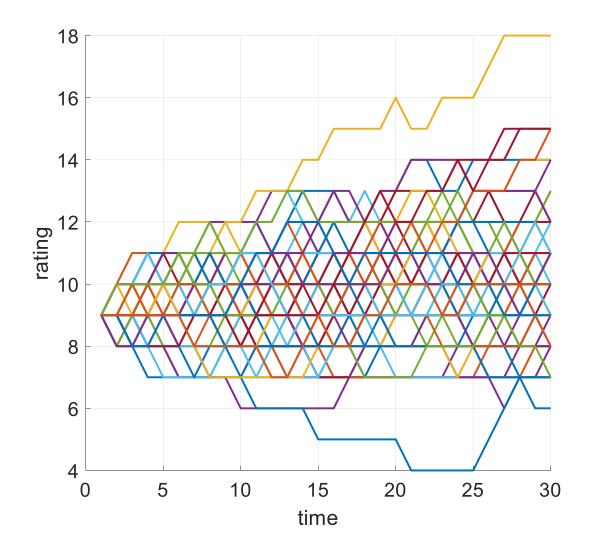

The price *P* at each node is given by the formula, where *t* is time, *i* is the value of risk-free rate at the point of time *t*, *cr* is current credit rating value and *q* denotes the probability of each way from the note.

$$P_{t,i,cr} = \sum_{s=1}^{n} q_s \frac{P_{s,t+1}}{(1+i_t)}$$

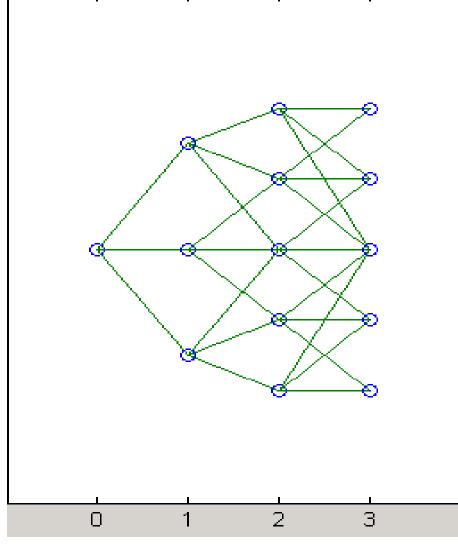


3 dimensional process simulation example




Global C	Corporat	e Trans	ition Ma	trix (%)	(1981-2	010)												
Rating	AAA	AA+	AA	AA-	A+	A	A-	888+	BBB	BB8-	88+	BB	88-	B+	В	8-	CCC/C	D
AAA	87.91	4.72	2.68	0.68	0.16	0.24	0.14	0.00	0.05	0.00	0.03	0.05	0.00	0.00	0.03	0.00	0.05	0.00
AA+	2.62	76.06	11.67	3.93	0.89	0.66	0.30	0.12	0.12	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA	0.47	1.32	80.64	8.01	2.89	1.41	0.43	0.42	0.14	0.09	0.05	0.04	0.02	0.00	0.00	0.02	0.05	0.02
AA-	0.05	0.13	4.28	76.93	10.02	2.84	0.71	0.27	0.14	0.07	0.04	0.00	0.00	0.04	0.11	0.02	0.00	0.04
A+	0.00	0.11	0.58	4.46	77.42	8.80	2.57	0.71	0.40	0.09	0.09	0.12	0.01	0.09	0.04	0.01	0.00	0.07
A	0.05	0.06	0.28	0.56	5.01	77.73	6.82	2.69	1,15	0.28	0.15	0.15	0.10	0.12	0.03	0.01	0.02	0.09
A-	0.06	0.01	0.11	0.20	0.61	6.78	75.80	7.51	2.36	0.68	0.16	0.15	0.16	0.14	0.04	0.01	0.05	0.08
888+	0.00	0.01	0.07	0.09	0.31	1.05	6.93	73.19	8.85	2.01	0.47	0.40	0.17	0.26	0.15	0.02	0.10	0.16
888	0.01	0.01	0.06	0.04	0.17	0.48	1.23	7.04	74.22	6.30	1.62	0.83	0.37	0.31	0.17	0.04	0.09	0.23
888-	0.01	0.01	0.01	0.07	0.07	0.24	0.40	1.37	8.56	71,12	5.48	2.59	1.03	0.56	0.34	0.22	0.31	0.38
BB+	0.07	0.00	0.00	0.05	0.02	0.15	0.12	0.63	2.29	11.70	62.56	6.43	3.24	1.27	0.83	0.19	0.51	0.56
BB	0.00	0.00	0.06	0.02	0.00	0,10	0.08	0.23	0.74	2.56	8.51	64.26	7.74	2.69	1.37	0.46	0.74	0.80
88-	0.00	0.00	0.00	0.01	0.01	0.01	0.07	0.13	0.30	0.48	2.06	8.23	63.76	8.43	3.06	0.97	0.91	1.31
B+	0.00	0.01	0.00	0.04	0.00	0.04	0.09	0.06	0.07	0.10	0.34	1.57	6.92	65.02	7.66	2.62	1.96	2.62
В	0.00	0.00	0.02	0.02	0.00	0.09	0.07	0.04	0.11	0.04	0.23	0.39	1.69	8.39	57.67	7.95	5.42	5.90
B-	0.00	0.00	0.00	0.00	0.04	0.07	0.00	0.14	0.07	0.14	0.18	0.21	0.61	3.13	10.22	51.30	10.82	9.15
0,000	0.00	0.00	0.00	0.00	0.05	0.00	0.14	0.09	0.09	0.09	0.05	0.23	0.56	1.39	2.91	8.70	43.80	27.43
Sources	: Standa	ard & Po	or's Glo	bal Fixe	d Incom	e Resea	arch and	Standa	rd & Po	or's Cre	dit Pro®							

Rating	AAA	AA+	AA	AA-	A+	A	A-	888+	BBB	B88-	88+	BB	88-	B+	В	B-	CCC/C	D
AAA	87.91	4.72	2.68	0.68	0.16	0.24	0.14	0.00	0.05	0.00	0.03	0.05	0.00	0.00	0.03	0.00	0.05	0.00
AA+	2.62	76.06	11.67	3.93	0.89	0.66	0.30	0.12	0.12	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA	0.47	1.32	80.64	8.01	2.89	1.41	0.43	0.42	0.14	0.09	0.05	0.04	0.02	0.00	0.00	0.02	0.05	0.02
AA-	0.05	0.13	4.28	76.93	10.02	2.84	0.71	0.27	0.14	0.07	0.04	0.00	0.00	0.04	0.11	0.02	0.00	0.04
A+	0.00	0.11	0.58	4.46	77.42	8.80	2.57	0.71	0.40	0.09	0.09	0.12	0.01	0.09	0.04	0.01	0.00	0.07
A	0.05	0.06	0.28	0.56	5.01	77.73	6.82	2.69	1,15	0.28	0.15	0.15	0.10	0.12	0.03	0.01	0.02	0.09
A-	0.06	0.01	0.11	0.20	0.61	6.78	75.80	7.51	2.36	0.68	0.16	0.15	0.16	0.14	0.04	0.01	0.05	0.08
888+	0.00	0.01	0.07	0.09	0.31	1.05	6.93	73.19	8.85	2.01	0.47	0.40	0.17	0.26	0.15	0.02	0.10	0.16
888	0.01	0.01	0.06	0.04	0.17	0.48	1.23	7.04	74.22	6.30	1.62	0.83	0.37	0.31	0.17	0.04	0.09	0.23
888-	0.01	0.01	0.01	0.07	0.07	0.24	0.40	1.37	8.56	71,12	5.48	2.59	1.03	0.56	0.34	0.22	0.31	0.38
BB+	0.07	0.00	0.00	0.05	0.02	0.15	0.12	0.63	2.29	11.70	62.56	6.43	3.24	1.27	0.83	0.19	0.51	0.56
88	0.00	0.00	0.06	0.02	0.00	0.10	0.08	0.23	0.74	2.56	8.51	64.26	7.74	2.69	1.37	0.46	0.74	0.80
88-	0.00	0.00	0.00	0.01	0.01	0.01	0.07	0.13	0.30	0.48	2.06	8.23	63.76	8.43	3.06	0.97	0.91	1.31
B+	0.00	0.01	0.00	0.04	0.00	0.04	0.09	0.06	0.07	0.10	0.34	1.57	6,92	65,02	7.66	2.62	1.96	2.62
В	0.00	0.00	0.02	0.02	0.00	0.09	0.07	0.04	0.11	0.04	0.23	0.39	1.69	8.39	57.67	7.95	5.42	5.90
B-	0.00	0.00	0.00	0.00	0.04	0.07	0.00	0.14	0.07	0.14	0.18	0.21	0.61	3.13	10.22	51.30	10.82	9.15
0,000	0.00	0.00	0.00	0.00	0.05	0.00	0.14	0.09	0.09	0.09	0.05	0.23	0.56	1.39	2.91	8.70	43.80	27.43


Rating	AAA	AA+	AA	AA-	A+	A	A-	888+	BBB	BB8-	88+	BB	88-	B+	В	8-	CCC/C	D
AAA	87.91	4.72	2.68	0.68	0.16	0.24	0.14	0.00	0.05	0.00	0.03	0.05	0.00	0.00	0.03	0.00	0.05	0.00
AA+	2.62	76.06	11.67	3.93	0.89	0.66	0.30	0.12	0.12	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA	0.47	1.32	80.64	8.01	2.89	1.41	0.43	0.42	0.14	0.09	0.05	0.04	0.02	0.00	0.00	0.02	0.05	0.02
AA-	0.05	0.13	4.28	76.93	10.02	2.84	0.71	0.27	0.14	0.07	0.04	0.00	0.00	0.04	0.11	0.02	0.00	0.04
A+	0.00	0.11	0.58	4.46	77.42	8.80	2.57	0.71	0.40	0.09	0.09	0.12	0.01	0.09	0.04	0.01	0.00	0.07
A	0.05	0.06	0.28	0.56	5.01	77.73	6.82	2.69	1,15	0.28	0.15	0.15	0.10	0.12	0.03	0.01	0.02	0.09
A-	0.06	0.01	0.11	0.20	0.61	6.78	75.80	7.51	2.36	0.68	0.16	0.15	0.16	0.14	0.04	0.01	0.05	0.08
888+	0.00	0.01	0.07	0.09	0.31	1.05	6.93	73.19	8.85	2.01	0.47	0.40	0.17	0.26	0.15	0.02	0.10	0.16
888	0.01	0.01	0.06	0.04	0.17	0.48	1.23	7.04	74.22	6.30	1.62	0.83	0.37	0.31	0.17	0.04	0.09	0.23
888-	0.01	0.01	0.01	0.07	0.07	0.24	0.40	1.37	8.56	71,12	5.48	2.59	1.03	0.56	0.34	0.22	0.31	0.38
88+	0.07	0.00	0.00	0.05	0.02	0.15	0.12	0.63	2.29	11.70	62.56	6.43	3.24	1.27	0.83	0.19	0.51	0.56
88	0.00	0.00	0.06	0.02	0.00	0.10	0.08	0.23	0.74	2.56	8.51	64.26	7.74	2.69	1.37	0.46	0.74	0.80
88-	0.00	0.00	0.00	0.01	0.01	0.01	0.07	0.13	0.30	0.48	2.06	8.23	63.76	8.43	3.06	0.97	0.91	1.31
B+	0.00	0.01	0.00	0.04	0.00	0.04	0.09	0.06	0.07	0.10	0.34	1.57	6.92	65.02	7.66	2.62	1.96	2.62
В	0.00	0.00	0.02	0.02	0.00	0.09	0.07	0.04	0.11	0.04	0.23	0.39	1.69	8.39	57.67	7.95	5.42	5.90
8-	0.00	0.00	0.00	0.00	0.04	0.07	0.00	0.14	0.07	0.14	0.18	0.21	0.61	3.13	10.22	51.30	10.82	9.15
0/000	0.00	0.00	0.00	0.00	0.05	0.00	0.14	0.09	0.09	0.09	0.05	0.23	0.56	1.39	2.91	8.70	43.80	27.43

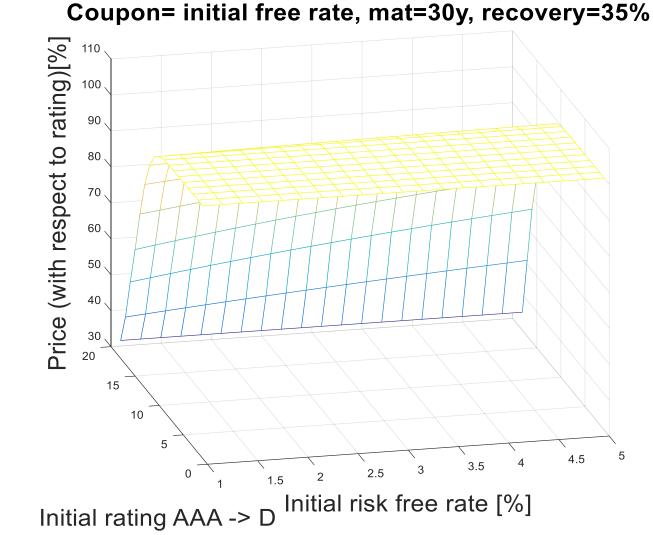
Rating	AAA	AA+	AA	AA-	A+	A	A-	BBB+	BBB	B88-	88+	BB	BB-	B+	В	B-	CCC/C	D
ANA	87.91	4.72	2.68	0.68	0.16	0.24	0.14	0.00	0.05	0.00	0.03	0.05	0.00	0.00	0.03	0.00	0.05	0.00
AA+	2.62	76.06	11.67	3.93	0.89	0.66	0.30	0.12	0.12	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA	0.47	1.32	80.64	8.01	2.89	1.41	0.43	0.42	0.14	0.09	0.05	0.04	0.02	0.00	0.00	0.02	0.05	0.02
AA-	0.05	0.13	4.28	76.93	10.02	2.84	0.71	0.27	0.14	0.07	0.04	0.00	0.00	0.04	0.11	0.02	0.00	0.04
A+	0.00	0.11	0.58	4.46	77.42	8.80	2.57	0.71	0.40	0.09	0.09	0.12	0.01	0.09	0.04	0.01	0.00	0.07
A	0.05	0.06	0.28	0.56	5.01	77.73	6.82	2.69	1,15	0.28	0.15	0.15	0.10	0.12	0.03	0.01	0.02	0.09
A	0.06	0.01	0.11	0.20	0.61	6.78	75.80	7.51	2.36	0.68	0.16	0.15	0.16	0.14	0.04	0.01	0.05	0.08
888+	0.00	0.01	0.07	0.09	0.31	1.05	6.93	73.19	8.85	2.01	0.47	0.40	0.17	0.26	0.15	0.02	0.10	0.16
888	0.01	0.01	0.06	0.04	0.17	0.48	1.23	7.04	74.22	6.30	1.62	0.83	0.37	0.31	0.17	0.04	0.09	0.23
888-	0.01	0.01	0.01	0.07	0.07	0.24	0.40	1.37	8.56	71,12	5.48	2.59	1.03	0.56	0.34	0.22	0.31	0.38
BB+	0.07	0.00	0.00	0.05	0.02	0.15	0.12	0.63	2.29	11.70	62.56	6.43	3.24	1.27	0.83	0.19	0.51	0.56
88	0.00	0.00	0.06	0.02	0.00	0,10	0.08	0.23	0.74	2.56	8.51	64.26	7.74	2.69	1.37	0.46	0.74	0.80
88-	0.00	0.00	0.00	0.01	0.01	0.01	0.07	0.13	0.30	0.48	2.06	8.23	63.76	8.43	3.06	0.97	0.91	1.31
B+	0.00	0.01	0.00	0.04	0.00	0.04	0.09	0.06	0.07	0.10	0.34	1.57	6.92	65.02	7.66	2.62	1.96	2.62
В	0.00	0.00	0.02	0.02	0.00	0.09	0.07	0.04	0.11	0.04	0.23	0.39	1.69	8.39	57.67	7.95	5.42	5.90
8-	0.00	0.00	0.00	0.00	0.04	0.07	0.00	0.14	0.07	0.14	0.18	0.21	0.61	3.13	10.22	51.30	10.82	9.15
0,000	0.00	0.00	0.00	0.00	0.05	0.00	0.14	0.09	0.09	0.09	0.05	0.23	0.56	1.39	2.91	8.70	43.80	27.43

Source: https://journals.vgtu.lt/index.php/BTP/article/view/8140/7057

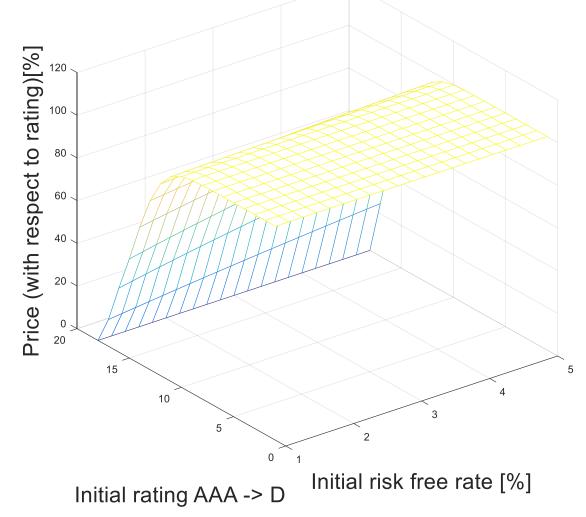
Risk-free interest rate development (interest rate tree)

Hull-White model

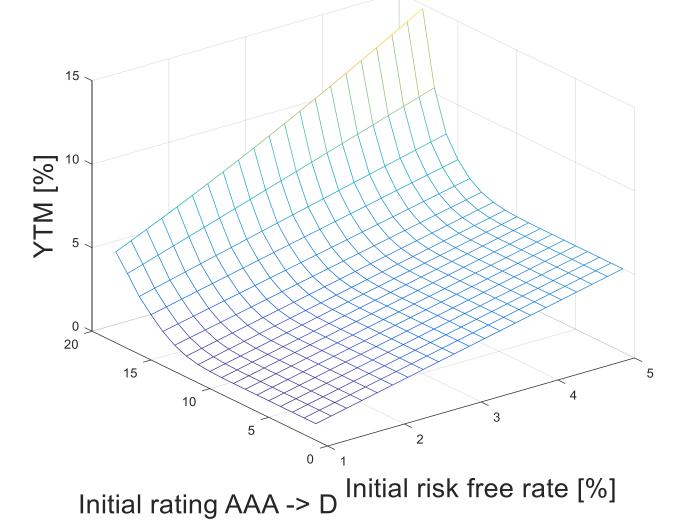
Two-factor model [edit]


The two-factor Hull–White model contains an additional disturbance term whose mean reverts to zero, and is of the form:

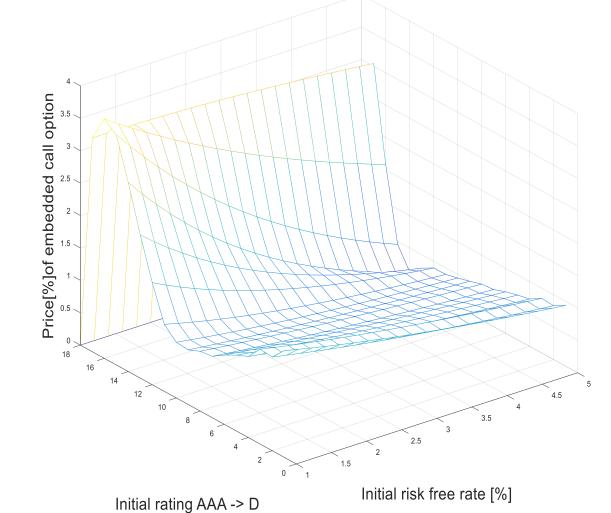
$$d\,f(r(t))=\left[heta(t)+u-lpha(t)\,f(r(t))
ight]dt+\sigma_1(t)\,dW_1(t)$$


where u has an initial value of 0 and follows the process:

 $du=-bu\,dt+\sigma_2\,dW_2(t)$


NumericalResults (example: Typical bond, 30 years, fixed coupon rate, recovery rate 0/35) Matlab implementation

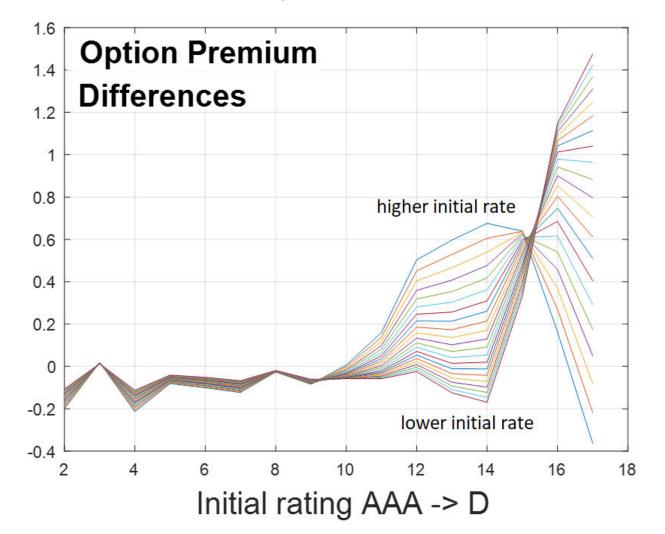
Coupon= initial free rate, mat=30y, recovery=0%



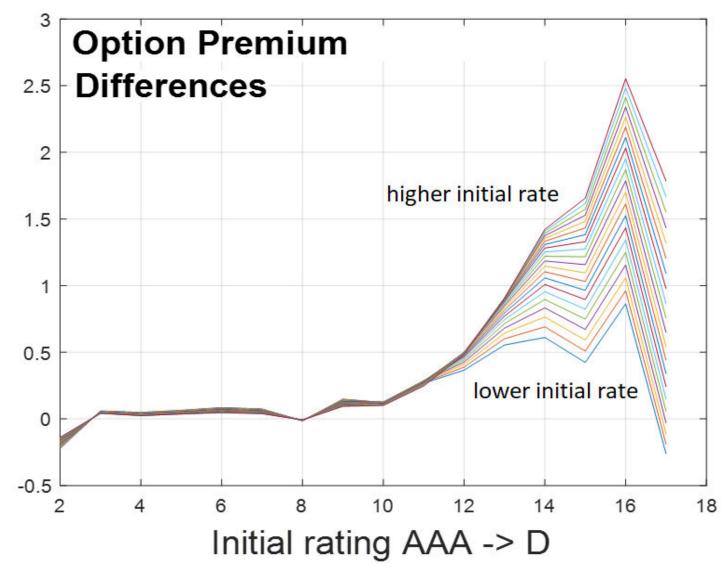
Coupon= initial free rate, mat=30y, recovery=35%

Rate:	1.0	1.2	1.4	1.6	1.8	2.0
AAA	100,2	100,2	100,2	100,2	100,2	100,2
AA+	100,2	100,2	100,2	100,2	100,2	100,2
AA	100,2	100,2	100,2	100,2	100,2	100,2
AA-	100,2	100,2	100,2	100,2	100,2	100,2
A+	100,2	100,2	100,2	100,2	100,2	100,2
Α	100,2	100,2	100,2	100,2	100,2	100,2
A-	100,2	100,2	100,2	100,2	100,1	100,1
BBB+	100,1	100,1	100,1	100,1	100,1	100,1
BBB	99,8	99,8	99,8	99,8	99,8	99,8
BBB-	98,7	98,8	98,9	98,9	99,0	99,0
BB+	96,0	96,2	96,3	96,5	96,6	96,8
BB	89,9	90,3	90,6	91,0	91,4	91,7
BB-	79,2	80,0	80,7	81,4	82,0	82,6
B+	64,0	65,1	66,2	67,3	68,2	69,2
В	46,4	47,7	49,0	50,2	51,4	52,6
B-	30,0	31,2	32,4	33,6	34,7	35,8
ССС	12,5	13,2	14,0	14,7	15,4	16,0
D	0,0	0,0	0,0	0,0	0,0	0,0

Price of embedded call/put option



Exer: risk free < init. rate or rating<init. rating; strike=init. price; c= init. rate; mat=30y


Price of embedded call/put option

Call/Put option premium sensitivity with respect to the development of credit risk

Call/Put option premium sensitivity with respect to the development of credit risk

Conclusions

- 1. The value of option premium of embedded call/put option increases with the worsening of credit rating. It could be well explained by the higher volatility of underlying asset price in the area of worse rating.
- 2. Based on the parameters of rating transition matrix, the sensitivity may not increase continuously (it increases in average); also the surface is not smooth because of parameters of the rating transition matrix.

Literature

Acerbi C, Tasche D (2002) On the Coherence of Expected Shortfall, Journal of Banking and Finance: 26, 1487–1503. Aguais SD, Forest LR (2000) The Future of Risk-Adjusted Credit Pricing in Financial Institutions, RMA Journal: 26–31. Aguais SD; Forest LR and Rosen D (2000) Building a Credit Risk Valuation Framework for Loan Instruments, Algo Research Quarterly 3: 21–46. Aguais SD and AM Santomero (1998) Incorporating new Fixed Income Approaches into Commerical Loan Valuation, Journal of Lending & Credit Risk Management: 58–65. Artzner PF, Dalbaen J, Eber M, Heath B (1999) Coherent Measures of Risk, Mathematical Finance 9:203–228. Brigo D, Mercurio F (2006) Interest Rate Models - Theory and Practice (Springer Berlin Heidelberg New York) 2nd ed. Castagna A, Mercurio F, Mosconi P (2009) Analytical Credit VaR with Stochastic Probabilities of Default and Recoveries, Working paper. Choro's-Tomczyk, B., Härdle, W. K., and Okhrin, O. 2016. A semiparametric factor model for cdo surfaces dynamics. Journal of Multivariate Analysis, 146:151–163. Cont R. and Minca A. (2013) Recovering portfolio default intensities implied by cdo quotes. Mathematical Finance, 23(1):94–121. Engelmann B and Rauhmeier R (2006) The Basel II Risk Parameters: Estimation, Validation, and Stress Testing (Springer Berlin Heidelberg New York). Gupton GM Finger CC, Bhatia M (1997) CreditMetrics - Technical Document, Working paper, Morgan Guaranty Trust Co. Horváth R. Teplý P (2013) Risk management of building societies in the Czech Republic. Ekonomický časopis/Journal of Economics Vol 61. No 1: 24-46. Janda K, Michalikova E, Skuhrovec J (2013) Credit Support for Export: Robust Evidence from the Czech Republic, The World Economy 36 (12), 1588-1610. Jarrow RA, Lando D, Turnbull S (1997) A Markov model for the Term Structure of Credit Spreads. Review of Financial Studies 10:481–523. Kalkbrener M (2005) An Axiomatic Approach to Capital Allocation, Mathematical Finance 15: 425–437. Kalkbrener M, Lotter H, Overbeck L (2004) Sensible and Efficient Capital Allocation for Credit Portfolios, Risk 17:19–24. Kau JB, Keenan DC (1995) An Overview of the Option-Theoretic Pricing of Mortgages, Journal of Housing Research 6: 217–244. Kolbe A, Zagst R (2008) A Hybrid-Form Model for the Prepayment-Risk-Neutral Valuation of Mortgage-Backed Securities, International Journal of Theoretical and Applied Finance 11: 635–656. Kopa M., Vitali S, Tichý T. et al. (2017) Comput Manag Sci 14: 559. https://doi.org/10.1007/s10287-017-0283-8. Kolman M (2017) Pricing credit using the PDE techniques, Advanced Methods of Computational Finance, Jiří Málek et al, Oeconomica: 13-35. Kurth A, TascheD (2003) Contributions to Credit Risk, Risk 16: 84–88. Janda K (2009) BANKRUPTCIES WITH SOFT BUDGET CONSTRAINT MANCHESTER SCHOOL, Published: JUL 2009 Volume: 77 Issue: 4: 430-460. Lando D (1998) On cox processes and creditrisky securities, Review of Derivatives Research 2: 99-120. Randall C, Tavella D (2000) Pricing Financial Instruments: The Finite Difference Method (John Wiley & Sons New York). Schoenbucher PJ (2003) Credit Derivatives Pricing Models (JohnWiley & Sons New York). Stanton R (1995) Rational Prepayment and the Valuation of Mortgage-Backed Securities, Review of Financial Studies 8:677–708. Tapiero C (2013) Engineering risk and finance. Springer, New York. TascheD (2002) Expected Shortfall and Beyond, Journal of Banking and Finance 26: 1519–1533. Wilson TC (1997a) Portfolio Credit Risk (I), Risk 10:111–117. Wilson TC (1997b) Portfolio Credit Risk (II), Risk 10:56–62.