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Course Organization

• Midterm Test: 6-7 week, max. 25 pts 

• 2-3 projects, valuation of derivative contracts, max. 

30 pts., presentations of selected solutions

• Final Test – TBA (last lecture or during the exam 

period), max. 45 pts.

– Excellent: 90-100

– Very good: 75-89

– Good: 60-74

• The Final can be repeated only if the total score is at 

least 50

• Slides, project assignment, and scores on ISIS
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Literature
Requirement ISBN Title Author Year of 

Publication 

Required  978-80-245-

1980-7 

Financial Derivatives – 

Valuation , Hedging and 

Risk Management 

Witzany, 

Jiří 

2013, 

Oeconomica 

Alternatively 978-80-245-

1878-7 

Financial Derivatives and 

Market Risk Management, 

Part II 

Witzany, 

Jiří 

2012, 

Oeconomica 

Recommended
1 

978-0-13-

216494-8 

Options, Futures, and Other 

Derivatives, 841 p. 

Hull, John 

C. 

2012, 8
th

 

edition, Pearson 

Recommended 978-80-245-

1811-4 

Financial Derivatives and 

Market Risk Management, 

Part I 

Witzany, 

Jiří 

2011, 

Oeconomica 

Optional 0387249680, 

0387401016 

Stochastic Calculus for 

Finance I,II 

Steven, E. 

Shreve 

2004-5 

Optional 978-80-7431-

079-9 

Matematika cenných 

papírů. 288 s. 

Cipra, 

Tomáš 

2013 

Optional 978-0-470-

01870-5 

Paul Wilmott on 

Quantitative Finance 

Paul 

Wilmott 

Wiley, 2006 

 
1) The course should cover chapters 5-8 from Witzany (2013)

or Chapters 19-31 from John Hull, 8th Edition (2012)

Source: Author
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Content
• Introduction – overview of B.-S. option 

pricing and hedging

• Market Risk Management and 

Measurement

• Estimating volatilities and correlations

• Interest Rate Derivatives Pricing-

Martingale and measures

• Standard Market Model
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Content

• Convexity, time, and quanto adjustments

• Short-rate and advanced interest rate 

models

• Volatility smiles

• Exotic options

• Alternative stochastic models

• Numerical methods for option pricing

• Credit derivatives
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Introduction – an overview from 

Financial Derivatives I

Forwards, Futures, Swaps, and Options

• Forwards, futures, and swaps are unconditional 
derivatives while options are conditional

• Call/Put, long/short position, European/American, in/at/out 
of the money, intrinsic/time value

• Stock options – mostly exchange traded – CBOE, PHLX, 
AMEX, PACIFEX, EUREX

• Options on indices – exchange traded – cash settlement

• Currency options - exchange traded and OTC

• Options on futures contracts – exchange traded – options 
to acquire long or short position in a futures contract

• Expiration date and strike price is defined – options are 
traded at a premium
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General one-step binomial tree

• A riskless portfolio can be set-up in general

• Risk-neutral probabilities can be calculated 

as follows

0 0

u df f f

S u S d S

 
  

 

( (1 ) ) [ ]· ·rT rT

u d Q Tf ff e q q e E f    
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0
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·]
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e
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Source: Author



European Social Fund Prague & EU: Supporting Your FutureFINACIAL DERIVATIVES II

8

No-Arbitrage approach
• Consider a stock with current value 𝑆0, which can move over period 

𝑇, either to 𝑆𝑢𝑝 or 𝑆𝑑𝑜𝑤𝑛

• We want to calculate the value of call option 𝒇 with strike price 𝐾
and maturity 𝑇

• We can construct a riskless portfolio consisting of 1 short call 

option and ∆ long stocks

• The value of the portfolio now is: 𝑃0 = ∆𝑆0 − 𝑓0
• In order for the portfolio to be riskelss, it must hold that:

• ∆𝑆𝑈𝑝 −max 𝑆𝑈𝑝 − 𝐾, 0 = ∆𝑆𝐷𝑜𝑤𝑛 −max(𝑆𝐷𝑜𝑤𝑛 − 𝐾, 0), or:

• ∆𝑆𝑈𝑝 − 𝑓𝑈𝑝 = ∆𝑆𝐷𝑜𝑤𝑛 − 𝑓𝐷𝑜𝑤𝑛 = ∆𝑆𝑇 − 𝑓𝑇 = 𝑃𝑇

• We can thus calculate the value of ∆ as: ∆=
𝑓𝑈𝑝−𝑓𝐷𝑜𝑤𝑛

𝑆𝑈𝑝−𝑆𝐷𝑜𝑤𝑛

• The riskless portfolio must earn the riskfree interest rate: 𝑃𝑇 = 𝑃0𝑒
𝑟𝑇

• Thus: 𝑃𝑇 = 𝑒𝑟𝑇 ∆𝑆0 − 𝑓0
• The option price 𝑓0 is the only unknown, so we can easily calculate it
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Risk-neutral Valuation
• Note, that the result does not depend on probabilities 

of the two scenarios

• However if we set up q, probability of the movement 

up, so that E(ST)=S0e
RT (the stock return equals to the 

risk-free rate) then it turns out that the price of the 

option equals to the discounted expected pay-off

• Risk neutral valuation principle: we can assume that 

the world is risk neutral when pricing an option. The 

result is valid also in the real world which is not risk-

neutral!
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Risk-Neutral approach
• In the risk-neutral world:

– Asset prices grow on average with the risk-free interest rate

– We can compute the value of any derivative at time t, by 

calculating the risk-neutral expected value at time T and then

discounting it with the risk-free rate to time t

• We will further denote risk-neutral expectations as 𝐸𝑄

• In the risk-neutral world it holds that: 𝐸𝑞 𝑆𝑇 = 𝑆0𝑒
𝑟𝑇

• In the binomial tree setting this means that:

• 𝑆0 = 𝑒−𝑟𝑇 𝑞 ∗ 𝑢 ∗ 𝑆0 + 1 − 𝑞 ∗ 𝑑 ∗ 𝑆0
• Where 𝑢 and 𝑑 denote the potential increase/decrease

and 𝑞 is the risk-neutral probability of increase

• The risk-neutral probability is then: 𝑞 =
𝑒𝑟𝑇−𝑑

𝑢−𝑑

• And option can be valued as: 𝑓0 = 𝑒−𝑟𝑇 𝑞𝑓𝑢 + 1 − 𝑞 𝑓𝑑
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Two-step binomial trees

The option price equals to the discounted expected pay-off 

in a risk neutral world

The binomial tree

is recombining

ˆ[ ]rT

Tf Ee f

Source: 

https://quant.stackexchange.com/questions/21

773/binomial-tree-notation, Author



European Social Fund Prague & EU: Supporting Your FutureFINACIAL DERIVATIVES II

12

General risk-neutral probabilities

• A general discount factor g … numeraire

• Define the risk neutral probability so that

• And use the replication argument to show that 

f/g is a martingale

as Sf g 
0 0

0

,S f

g

,d d

d

S f

g

,u u

u

S f

g

0 where(1 )   u d

S
Z qZ q Z Z

g
   

0

0

(1 ) =E | 0  u d T
Q

u d T

f f f f
q q

g g g g

 
    

 

𝑔 = 𝑒−𝑟𝑡

Source: Author
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Continuous Stochastic Modeling

of Stock Prices
• Stochastic proces – variable 𝑥𝑡 whose value depends on 

time 𝑡 and changes in an uncertain way

• 𝑓 𝑥𝑡 is the distribution of variable 𝑥𝑡 at time 𝑡

• Discrete/continuous time, discrete/continuous variable

• Markov proces – only the present value of a variable is

relevant for the future: 𝑓 𝑥𝑡+ℎ|𝑥𝑡 , … , 𝑥0 = 𝑓 𝑥𝑡+ℎ|𝑥𝑡
• Market rates (stock prices, exchange rates, interest rates, 

etc.) are usually assumed to follow the Markov proces (vs. 

Technical analysis)

• Martingale – the expected value of the variable in the

future is equal to the current value E 𝑥𝑡+ℎ|𝑥𝑡 , … , 𝑥0 = 𝑥𝑡
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Wiener process
• Continuous time proces – any time period can be divided into

arbitrary number of steps

• Wiener proces (Brownian motion) – Continuous Markov proces, 

where 𝑧 1 − 𝑧 0 has distribution 𝑁(0,1) and the distributions are 

uniform and independent for small time steps

• Properties of the Wiener proces:

1. 𝑧 0 = 0

2. 𝑧 has independent increments

3. 𝑧 𝑡 + 𝑢 − 𝑧 𝑡 ~ 𝑁(0, 𝑢) (i.e. normal distribution with variance 𝑢)

4. 𝑧 has continous paths with probability 1

• Stochastic difference equation: 𝑑𝑧 = 𝜀 𝑑𝑡 where 𝜀 is random

variable with the distribution 𝑁 0,1

• Square root of time rule: 𝑧 𝑇0 + 𝑡 − 𝑧 𝑇0 has distribution 𝑁 0, 𝑡

• Generalized Wiener proces: 𝑑𝑥 = 𝑎𝑑𝑡 + 𝑏𝑑𝑧

• i.e. 𝑥 𝑇0 + 𝑡 − 𝑥 𝑇0 has the distribution 𝑁 𝑎𝑡, 𝑏2𝑡
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Wiener proces illustration

Source: John Hull, Options, Futures, and Other Derivatives, 5th edition
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Ito‘s process

• , where is the Wiener 
process increment

• The drift and the variance depend on x and t

• The process for Stock prices S: normally 
distributed annualized rate of return with 
expected value  and standard deviation 
(observed for a small time periods, not one year)

• Geometric Brownian Motion

• It turns out that is not normally distributed, 
but lognormally distributed

( , ) ( , )dx a x t dt b x t dz  dz

Sdt dzdS S 

( )S T
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Ito‘s Lemma

• If where x follows an Ito‘s 

process

then G follows the Ito‘s process

where is the same as above.

( , )G G x t

( , ) ( , ) ,dx a x t dt b x t dz 

2
2

2

1

2

G G G G
b bdz

x t x
dG a dt

x

 
   
 

   


   

dz
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Derivation of Ito‘s Lemma
• Ito‘s Lemma can be derived from Taylor series expansion

• Let 𝑥 follow an Ito‘s proces:

• 𝑑𝑥 = 𝑎 𝑥, 𝑡 𝑑𝑡 + 𝑏 𝑥, 𝑡 𝑑𝑧

• And let 𝐺 be a function 𝐺 = 𝐺 𝑥, 𝑡

• The Taylor series expansion of 𝐺 would be:

• 𝑑𝐺 =
𝜕𝐺

𝜕𝑥
𝑑𝑥 +

𝜕𝐺

𝜕𝑡
𝑑𝑡 +

1

2

𝜕2𝐺

𝜕𝑥2
𝑑𝑥2 +⋯

• Substituting for 𝑑𝑥 we get:

• 𝑑𝐺 =
𝜕𝐺

𝜕𝑥
𝑎𝑑𝑡 + 𝑏𝑑𝑧 +

𝜕𝐺

𝜕𝑡
𝑑𝑡 +

1

2

𝜕2𝐺

𝜕𝑥2
𝑎2𝑑𝑡2 + 2𝑎𝑏𝑑𝑡𝑑𝑧 + 𝑏2𝑑𝑧2

• It holds that 𝑑𝑡2 ≈ 0 and 𝑑𝑡𝑑𝑧 ≈ 0, but 𝑑𝑧2 = 𝑑𝑡

• By rewriting the formula we get the Ito‘s Lemma:

• 𝑑𝐺 =
𝜕𝐺

𝜕𝑥
𝑎 +

𝜕𝐺

𝜕𝑡
+

1

2

𝜕2𝐺

𝜕𝑥2
𝑏2 𝑑𝑡 +

𝜕𝐺

𝜕𝑥
𝑏𝑑𝑧
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Application of Ito‘s Lemma
• Let 𝑆 follow a Geometric Brownian Motion:

• 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧

• And let 𝐺 be a function 𝐺 = ln(𝑆)

• Process followed by 𝐺 can be derived with Ito‘s Lemma:

• 𝑑𝐺 =
𝜕𝐺

𝜕𝑆
𝜇𝑆 +

𝜕𝐺

𝜕𝑡
+

1

2

𝜕2𝐺

𝜕𝑆2
𝜎2𝑆2 𝑑𝑡 +

𝜕𝐺

𝜕𝑆
𝜎𝑆𝑑𝑧

• We can compute the derivatives as:

•
𝜕𝐺

𝜕𝑆
=

1

𝑆

𝜕𝐺

𝜕𝑡
= 0

𝜕2𝐺

𝜕𝑆2
= −

1

𝑆2

• By substituting for the derivatives, we can get:

• 𝑑𝐺 = 𝜇 −
1

2
𝜎2 𝑑𝑡 + 𝜎𝑑𝑧
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Lognormal property

• Let G=ln S, where S follows the 

geometric Brownian motion, then 

applying the Ito‘s lemma we get:

• Which is a Generalized Wiener Process

• Consequently ln S(T)-ln S(0) has the 

normal distribution N((-2/2)T, 2T)

2

2
dG dt dz


 
 

  
 


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Lognormal property
• Lognormal property of stock prices

Sdt dzdS S 

 2 2

0ln ln ( 2) ,TS S N T T    

 2 2

0ln ln ( 2) ,TS N S T T   

 2,
dS

N dt
S

dt 
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Lognormal property of Stock prices

• It can be shown that

• Stock price can be modelled/simulated as

E S S e

S S e e

T

T

T

T T

( )

( ) ( )



 

0

0

2 2 2

1

                                        

var                  



 

0

2 2

,
2

T

TS S e

N
T











 
  

 
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Lognormal distribution

Lognormal Distribution

0

0

f(x)

Source: https://www.vosesoftware.com/riskwiki/LognormalBdistribution.php, 

Author

https://www.vosesoftware.com/riskwiki/LognormalBdistribution.php
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Assumptions of the Black-Scholes Model

1. The asset price follows the geometric Brownian motion 

process with constant drift and volatility (lognormal 

returns):

2. There is no income paid by the asset.

3. The risk free interest rate r is constant. We can lend and 

borrow at the same rate and without any restrictions.

4. There are no transaction costs and taxes. 

5. Assets are arbitrarily divisible. 

6. Short selling of securities is possible without 

restrictions.

7. There are no arbitrage opportunities.

8. Security trading is continuous; i.e., we can trade in 

infinitesimal time interval. 24

Sdt dzdS S 
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Black-Scholes differential equation

Risk - less portfolio: - 1 option +  stocks, i.e.

Ito‘s lemma applied to                  :

Sdt dzdS S 

2
2 2

2

1

2

f f f f
df S dt dz

S t S S
S S  

    
    

    

( , )f f S t

f
f S

S


   


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Black-Scholes differential 

equation

Source: John Hull, Options, Futures, and Other Derivatives, 5th edition
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Black-Scholes differential

equation

Combing the SDEs for dS and df

2
2 2

2

2
2 2

2

1

2

1

2

f f f f f
S d

f

t dz dz

d df dS
S

S t S S S

f f
S dt

t

f
S S Sdt S

S

S

    



     
     

   


    




  

 

  
  

  




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Black-Scholes differential

equation

Hence the portfolio is risk less, as expected, and so

And we get the Black-Scholes-Merton partial differential equation:

d r dt  

2
2 2

2
(

1
)

2

f f f
S dt r S dt

t S S
dt r f

   
  

   
    

2
2 2

2

1

2

f f f
rS S

t S S
rf

  
 




 
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Risk-neutral valuation

• The Black-Scholes-Merton equation does not 
depend on the expected return , i.e. on investors 
risk preferences!!!

• We can assume that we are in a risk-neutral 
world.

• The result will be the same as in the real world 
with risk sensitive investors.

• Consequently we can simply discount the 
expected pay-off of an option using the risk free 
rate.

• The result will be the unique solution of the 
differential equation
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The Black-Scholes Formula

• Consider a European Call option

• Then in the risk neutral world, where 

the value of the option at is:

• Using the lognormal property of ST we obtain

30

dS rSdt Sdz 

0
ˆ ˆ[ ] [max( ,0)]rT rT

T Tc e E c e E S K   

0 0 1 2) ( )( rTc S N d Ke N d 
2

0
1

ln( / ) ( / 2)S K r T

T
d





 


12

2

0ln( / ) ( / 2)S K r
T

T

T
d d






 
  

Source: Author
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• Similarly for a put options with the same K and T

• The formula also follows from the put call parity

• The function N(x) denotes the standardized 

cumulative normal distribution, for example 

NOMSDIST(x) in Excel

The Black-Scholes Formula

31

0 2 0 1))( (rTp Ke N d S N d   
Source: Author

Source: John Hull, 

Options, Futures, and

Other Derivatives, 5th 

edition
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Derivation of the BS Formula

(for a European Call Option)

32

 2 2 2 2

0

1
 wherln , , ln .e  and 

2
w m rS N m S T w T 

 
 


 


[max( ,0)] ( ) ( )
K

E S K S K g S dS



   TS SOur goal is to calculate with

Substitute
ln S m

X
w




2 /2( ) ( )
1

2

Xg S dS X dX e dX


 and so

2 2

(ln )/

2 /2( 2

(ln )/ (ln

)/

)/

2

[max( ,0)] ( ) (

1 1

2

)

2

Xw m

X

K m

Xw m

w

K m w K m w

X

E S K e K X dX

e dX K e dX



 























   

 



 

2 /2

(ln )/

1

2
( (ln ) / )

K m w

Xe dX N K m w






    ( ) Pr[( ) ] ( )

x

N XX x Xx x d


    

The second integral is easy:
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Derivation of the BS Formula

Regarding the first integral:
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Source: Author
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The Greeks
• Partial derivatives of an option (portfolio) market 

value measure sensitivity with respect to the 

relevant variables

• Delta, Gamma – the 1st and the 2nd derivatives 

w.r.t. the underlying asset price

• Vega – the derivative w.r.t. the volatility variable

• Rho – the derivative w.r.t  the interest rate

• Theta – the derivative w.r.t. to time, ususally

measured as the change of value „per day“

• The Greeks are used for hedging… Delta-

hedging, Vega-hedging, Gamma-hedging e.t.c
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The Greeks and Delta Hedging

For a European call option on a non-dividend paying stock

For a put option use the put-call parity c+Ke-rT = p+S0

Example (Delta hedging): Consider a portfolio consisting

of three different option positions on the same underlying asset

with deltas +100, -60, +30. Propose an appropriate delta hedging

using a forward contract with the same (no income) underlying.

call 1( )
c

N d
S





 

1
call put

( )N d

S T t


 



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(
(
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)
)r T tSN d
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T t

Ke N d
  
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Value and Delta decay

Source: MATLAB
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Gamma and Vega decay

• Gamma and Theta are the same for Call and Put

options on the same underlying and with the same

strike price and maturity

• All charts were generated for K=100, σ=20% and r=2%

Source: MATLAB
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Theta and Rho decay

Source: MATLAB
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Call vs. put option theta
• We can see that while the call option theta is always negative (i.e. 

option value decreases with time), put option theta is positive for

deeply in-the money options

• Time to maturity influences the option price through the following

channels:

– Discounting of future payoff (negative for call and put options)

– Drift rate of the stock price (positive for call, negative for put) 

– Through the volatility of future payofff (positive for both options)

• The drift rate channel is always stronger than the discounting

channel for call options. Together with the volatility channel it thus

assures that option value decreases as T decreases.

• For put options the effects of the drift and discounting work in the

opposite direction (with respect to T) than the volatility effect

• The result is that for deeply in the money call options (for which

vega is low), the value may increase as T decreases

• This is why American put options on a non-dividend paying stock

may sometimes be exercised before maturity (unlike calls)
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Delta, Gamma, Vega hedging

• Delta hedging – With stock or futures

• Gamma hedging – With another option

• Theta hedging – With another option (by hedging

Gamma, we hedge Theta as well)

• Vega hedging – With another option (if we want to 

hedge Gamma as well, we need two options)

• Rho hedging – With money market instruments

• Hedging all Greeks: First hedge Vega and Gamma by 

using 2 other options (with short and long maturity), 

then hedge the remaining Delta with stock or futures, 

and finally hedge Rho on the money market
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Delta Hedging Example
• A trader that has just sold an at-the-money straddle 

on 1000, and bought an out-of the money call on 

1500 non dividend paying stocks.

• The actual stock price is , we assume constant 

interest rate and volatility . All the three 

European options have six months to maturity, , 

the strike price of the straddle call and put options 

is  , and the strike of the out-of-the money call 

is . The trader has received a net initial 

premium of €5 000 and currently is in a profit around 

€940. 

50S 
1%r  15% 

0.5T 

50K 

60K 

41
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Delta Hedging Example
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Development of the option portfolio value and 

delta depending on the underlying stock 
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Source: Author
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Delta Hedging Example

Day S Port. delta Or. port. value Delta pos. Buy/sell Cost Cum.cost Total portf.

1 50,00  29,50     942,89          29 -           29 -          1 450,00         1 450,00     942,89      

2 51,00  85,15 -    913,89          85            114        5 814,00 -        4 364,00 -    884,89      

3 51,50  135,87 -  858,71          135         50           2 575,00 -        6 939,00 -    872,21      

4 52,00  181,37 -  779,57          181         46           2 392,00 -        9 331,00 -    860,57      

5 53,00  254,95 -  560,49          254         73           3 869,00 -        13 200,00 - 822,49      

6 53,50  282,43 -  426,55          282         28           1 498,00 -        14 698,00 - 815,55      

7 54,00  303,51 -  280,53          303         21           1 134,00 -        15 832,00 - 810,53      

8 55,00  326,54 -  35,01 -           326         23           1 265,00 -        17 097,00 - 797,99      

9 57,00  302,30 -  675,10 -         302         24 -          1 368,00         15 729,00 - 809,90      

10 59,00  206,34 -  1 190,40 -     206         96 -          5 664,00         10 065,00 - 898,60      

Simulation of a dynamic portfolio delta-hedging

43

Source: Author



European Social Fund Prague & EU: Supporting Your FutureFINACIAL DERIVATIVES II

Gamma and Vega Hedging 

Example
• Gamma of the portfolio -122 can be offset by a long 

position in more liquid options, e.g. by a long one 

month straddle

• In order to hedge the Vega (-191 mil. for the 

Gamma-hedged portfolio) we also need to use 

longer maturity options, e.g. 1 year, and solve a set 

of equations with two unknowns
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-5 000,00    
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Portfolio delta

Source: Author
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Higher order Greeks

45

• Black-Scholes model uses only one second-order

Greek (gamma), but more complex option pricing

methods (Heston model, Vanna-Volga method, etc.) 

work commonly with second-order Greeks:

• Large option traders and market-makers also

commonly use second or even third-order greeks

(e.g. Speed) to hedge their portfolios

𝐺𝑎𝑚𝑚𝑎 =
𝜕∆

𝜕𝑆
=
𝜕2𝑓

𝜕𝑆2
𝑉𝑎𝑛𝑛𝑎 =

𝜕∆

𝜕𝜎
=
𝜕ν

𝜕𝑆
=

𝜕2𝑓

𝜕𝑆𝜕𝜎

𝑉𝑜𝑚𝑚𝑎 =
𝜕ν

𝜕𝜎
=
𝜕2𝑓

𝜕𝜎2
𝑆𝑝𝑒𝑒𝑑 =

𝜕Г

𝜕𝑆
=
𝜕3𝑓

𝜕𝑆3
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Options on Income Paying Assets

• If an asset with price S(t) pays continuous income 

q than its drift must be reduced by q compared to 

assets paying no income and with the same risk

• In the risk neutral world dS = (r-q)Sdt +Sdz

• If U(t) = S(t)e-q(T-t) then dU = rUdt + Udz and  S(T) = 

U(T), U(0)=S0e
-qT … reinvestment policy

 Use the same formulas (put-call parity, pricing, and

Greeks) as for options on non-dividend stocks but 

replace S0 by S0e
-qT !!!

• Applicable to options on stock indices or on 

foreign currencies (q = rforeign)
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Options on Futures
• Options on futures are settled by entering in a futures 

position and by an immediate gain-loss settlement (i.e. 

F-K or K-F)

• For a futures on a non-dividend paying stock 

F = Ser(T-t)

• Consequently in the risk neutral world     

dF = (r-r)Fdt + Fdz = Fdz

 Use the same formula as for options on non-dividend 

stocks but replace S0 = F0 by F0e
-rT (q = r)

• Options on futures are usually American type – the 

formula above applies only to European options on 

futures! … European and American prices coincide for 

calls not for puts
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Content
 Introduction – overview of B.-S. option 

pricing and hedging

 Market Risk Management

• Estimating volatilities and correlations

• Interest Rate Derivatives Pricing-

Martingale and measures

• Standard Market Model
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Market Risk Management and 

Measurements
• Risk: market, credit, operational, liquidity

• Independence of risk management 

organization is of key importance

49

Source: Author



European Social Fund Prague & EU: Supporting Your FutureFINACIAL DERIVATIVES II

Market Risk Management

• Market Risk Department sets limits, measures, 

and controls not only the market itself but also 

the counterparty risk

• A typical organization structure between the Risk 

and Investment Banking 

50

Back office

Source: Author
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Classical Market Risk Measures

• Value of investment – number of securities 

held

• Treatment of unsettled spots/forwards

• How to combine positions in different 

securities – take into account correlations?

• The simple measures are often used to set 

basic limits – not precise, but easy to 

evaluate

51
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Interest Rate Risk Management
• Gap analysis, Duration and Basis Point Value

• Can be also used for a set of maturities

• Portfolio of bonds is divided into cash-flows for

each time from 1…n

• Sensitivities to 1bp parallel shift, twist of the term 

structure - Principal Component Analysis (PCA)

( 0.01%) ( )BPV V r V r  

0.01%VBPV D  

1 1,..., 0.01%,..., ,..., )( ) (i

i n nr rBPV V r V r r  

1

m
i

i

i

V x BPV


 
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General Delta Sensitivity Approach

• Sensitivities with respect to relevant market 

factors

• Or including the second order derivatives

• The risk factors can be: Stock prices, stock

indices, interest rates, yields, exchange rates, 

commodity prices, implied volatilities, etc. 

   1 1 1
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Value at Risk
• “How large loss can we suffer on a portfolio 

(or business activity)? And what is the 

probability of such a loss?” 

   ( ) ( )V V t t V t    x x

1, )(absVaR qt   
1, )( [ ]relVaR E qt V    

CVaR – expected 

shortfall

54

𝐶𝑉𝑎𝑅𝑎𝑏𝑠 = −𝐸 ∆𝑉|∆𝑉 ≤ −𝑉𝑎𝑅𝑎𝑏𝑠

𝐶𝑉𝑎𝑅𝑟𝑒𝑙 = 𝐸 ∆𝑉 − 𝐸 ∆𝑉|∆𝑉 ≤ −𝑉𝑎𝑅𝑎𝑏𝑠

Source: Author
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VaR estimation methods
• Historical simulation

• Analytical VaR

– Linear vs. Non-linear approximations

– Gaussian vs. t-distribution

• Monte carlo simulations

– Simulating returns from a distribution

– Simulation of stochastic processes (SVJD)

• Advanced approaches (extreme value

theory, copula functions, etc.)
55
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Historical VaR
• For all factors 𝑗 = 1,… ,𝑚 and times 𝑗 = 1,… , 𝑁

calculate the historical returns:

• Compute projected portfolio 

returns for all scenarios:

• The scenarios represent the empirical

multivariate distribution of

• Empirical quantiles can

be used to compute

VaR and CVaR

• Standard error:

• Alternativelly we can get s

with bootstrapping
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𝑟𝑗
𝑖 =

𝑥𝑗
𝑖 − 𝑥𝑗

𝑖−1

𝑥𝑗
𝑖−1

𝑠=
1

𝑓(𝑞)

1−𝛼 𝛼

𝑁

𝑉 𝒙(𝑡 + ∆𝑡) Source: Author
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Analytical VaR
• In the case of normally distributed portfolio returns

VaR and CVaR depend only on volatility σ:

• We can use linear aproximation to estimate portfolio  

variance as:

• Where 𝑟𝑗 denotes the factor returns, 𝑎𝑗 the sensitivity 

of the portfolio to the factors, and 𝐶𝑜𝑣𝑖,𝑗 is the

covariance matric of factor returns

• Change of time horizon: 𝑉𝑎𝑅 𝑛∆𝑡, 𝛼 = 𝑛 𝑉𝑎𝑅 ∆𝑡, 𝛼

 1 1· · ·rel N N Nq q qVaR            
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j j
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i j
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  α Covα
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𝐶𝑉𝑎𝑅 =
𝑁′ 𝑞𝛼

𝑁

1 − 𝛼
𝜎
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Analytical VaR - Example
• Consider a Czech investor holding a portfolio of:

o 𝑎 units of US Stock S&P500 ETF with price 𝑋1 in USD

o 𝑏 units of EuroStoxx 600 ETF with price 𝑋2 in EUR

• And denote 𝑆1 the USD/CZK rate and 𝑆2 the EUR/CZK rate

• The value of the portfolio in CZK is: 𝑉 = 𝑎𝑆1𝑋1 + 𝑏𝑆2𝑋2
• We can use linear aproximation to aproximate the

change of the portfolio value:

• ∆𝑉 ≅ σ𝑖=1
4 𝜕𝑉

𝜕𝑥𝑖
∆𝑥𝑖 = σ𝑖=1

4 𝑎𝑖𝑟𝑖

• Where: 𝑎𝑖 =
𝜕𝑉

𝜕𝑥𝑖
𝑥𝑖 and 𝑟𝑖

∆𝑥𝑖

𝑥𝑖

• Portfolio variance is: 𝜎𝑉
2 = 𝜶′𝑪𝒐𝒗 𝜶 = σ𝑖,𝑗=1

4 𝑎𝑖𝑎𝑗𝐶𝑜𝑣𝑖,𝑗

• And portfolio VaR: 𝑉𝑎𝑅𝑅𝑒𝑙 = 𝜎𝑉𝑞𝑝
𝑁
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Cornish-Fisher expansion
• Better approximation of ∆𝑉 can be achieved by 

including the second order terms:

• ∆𝑉 ≅ σ𝑗=1
𝑚 𝛼𝑗𝑟𝑗 +

1

2
σ𝑖,𝑗=1
𝑚 𝛾𝑖𝑗𝑟𝑖𝑟𝑗

• Where 𝛾𝑖𝑗 =
𝜕2𝑉

𝜕𝑥𝑖𝑥𝑗
𝑥𝑖𝑥𝑗

• Quantiles of ∆𝑉 can then be estimated with the

Cornish-Fisher expansion:

• 𝑞𝑝 ∆𝑉 ≅ 𝜇𝑉 +𝑤𝑝𝜎𝑉

• Where 𝑤𝑝 = 𝑞𝑝
𝑁 +

1

6
𝑞𝑝
𝑁 2

+ 1 ξ𝑉

• Where ξ𝑉 is the skewness of ∆𝑉
59
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Alternative parametric distributions
• Alternative parametric distributions 

– e.g. Student t-distribution

• Aproximates the fat tails of the return distribution

• Variable
𝑣

𝑣−2

𝑋−𝜇

𝜎
has a t-distribution with 𝑣

degrees of freedom

• VaR is estimated

by using quantiles

of the t-distribution
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Source: MATLAB, 

Author
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t-Distribution VaR - Example
• Lets consider portfolio 𝑉 with parameters 𝜇 = 0.5

and 𝜎 = 2

• Table below shows the values of VaR and CVaR

with p=95% and p=99% for different 𝑣

• With infinite degrees of freedom the t-distribution

converges to the normal distribution

61

Degrees of freedom (v) VaR(95%) CVaR(95%) VaR(99%) CVaR(99%)

3 2.71 4.47 5.24 8.11

5 3.11 4.54 5.21 6.88

7 3.24 4.2 4.94 5.99

Infinite (normal) 3.29 4.12 4.65 5.33

Source: Author
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Disadvantages of VaR
• Disadvantages of VaR: model dependence, 

volatility and correlations estimates

dependence (CHF example)

62
Source: Barchart
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Basel Capital Accord
• BCBS 1988: Basel I or “The Accord”

• BCBS 1996: Market Risk Amendment

• BCBS 2004: Basel II

• BCBS 2010: Basel III

• Regulatory capital= Credit + Market + Operational 

risk capital

• Market risk: standardized or internal model based 

approach

• Basel III introduces stressed VaR, Incremental Risk 

Charge (IRC), and CVA VaR

• Fundamental Review of the Trading Book (2012) –

Basel Consultative document proposing to use CVaR

Regulatory capital · (10 days,99) SRCVaRk  3k 
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Content
 Introduction – overview of B.-S. option 

pricing and hedging

 Market Risk Management

 Estimating volatilities and correlations

• Interest Rate Derivatives Pricing-

Martingale and measures

• Standard Market Model
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Asset price movements

Source: MATLAB



European Social Fund Prague & EU: Supporting Your FutureFINACIAL DERIVATIVES II

66

Asset price returns

Source: MATLAB
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Asset return distribution

Source: MATLAB
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Asset price correlation

Source: MATLAB
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Estimating Volatilities 

(and Correlations)

• Volatility estimated from historical data … 

forward looking volatilities … option pricing

• Standard approach

• Weighted estimates

• EWMA – Exponentially Weighted Moving 

Average

1

ln i
i

i

S
u

S 
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ARCH and GARCH
(Generalized) Auto-Regressive Conditional Heteroskedasticity

• ARCH(m) Model

• GARCH(1,1) Model

• It can be shown to correspond to the 

variance mean-reversion process

) , , 2( L V dt Vdz adV a V      
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The series of PX index values and daily returns
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Source: MATLAB
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Estimating Volatilities Example

Comparison of equal weighted, EWMA, and GARCH(1,1)

historical daily PX index volatility (                  ),0.97 
72
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GARCH volatility illustration

73Source: MATLAB
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Maximum Likelihood 

Calibration
• Find the coefficients (EWMA, ARCH, GARCH) to 

maximize the likelihood function

• To perform the maximization, likelihood is converted

to the log-likelihood (the maximum is the same)

• GARCH usually provides the best results (EWMA 

does not incorporate mean reversion)
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GARCH Estimation - Example

1. Fill the returns time-series and 

random initial GARCH parameters

2. Compute GARCH predictions of

variance for each day

3. Calculate the daily contributions to 

the log-likelihood and their sum

4. Use Solver to find the values of

parameters 𝜔, 𝛼 and 𝛽 that 

maximize the total log-likelihood

𝐿𝐿 𝒖;𝜔, 𝛼, 𝛽 =෍

𝑖=1

𝑁

ln
1

𝜎𝑖 2𝜋
ex𝑝 −

𝑢𝑖
2

2𝜎𝑖
2

𝜎𝑖
2 = 𝛾𝑉𝐿 + 𝛼𝑢𝑖−1

2 + 𝛽𝜎𝑖−1
2

𝛾 + 𝛽 + 𝛼 = 1

𝜔 = 𝛾𝑉𝐿

Source: Author
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Forecasting Future Volatility

• Given the GARCH(1,1) parameters at 

the end of day n-1, estimate

• On day n+k
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Volatility Term Structure

implied by the model

Expected (daily) variance over the life of an option

Source: John Hull, Options, Futures, and Other Derivatives, 5th edition
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GARCH extensions
• FIGARCH – In practice volatility returns to its mean slower

than exponentially, FIGARCH (fractionally integrated

GARCH) solves this – hyperbolic decay (i.e. long memory)

• AGARCH, EGARCH, GJR-GARCH – Introduce

correlation between the price changes and the volatility

• Negative returns have a larger impact on volatility than

positive ones (on the stock markets)

• GJR-GARCH(1,1):

• 𝜎𝑡
2 = 𝐾 + 𝛿𝜎𝑡−1

2 + 𝛼𝜖𝑡−1
2 + ϕ𝜖𝑡−1

2 𝐼𝑡−1
• Where 𝐼𝑡−1 = 0 if 𝜖𝑡−1 ≥ 0, and 𝐼𝑡−1 = 1 if𝜖𝑡−1 < 0

• For a review see Bollerslev (2009) “Glossary to ARCH (GARCH)“
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Long memory of volatility

• The long-memory effect can best be seen from the

autocorrelation function of the VIX index

• We can see that the autocorrelation function decays in a 

in a very slow, hyperbolic way, and not the exponential

one assumed by short-memory models (e.g. GARCH)

Source: MATLAB Source: MATLAB
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Estimating  Covariances and Correlations

• Standard sample estimate

• EWMA

• Scalar BEKK

• GARCH BEKK

• DCC GARCH… univariate GARCH to 

estimate volatilities and scalar BEKK on 

normalized returns to estimate correlations

• Copula correlations (dependence modeling)

1
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Copula correlations
• Enable the modeling of tail correlation

• Correlations increase in extreme market conditions

• Sklar‘s theorem – Any multivariate distribution

𝐻 𝑥1, … , 𝑥𝑛 can be expressed in terms of its marginals

𝐹𝑖 𝑥 = 𝑃𝑟 𝑋𝑖 ≤ 𝑥 and copula 𝐶:

• 𝐻 𝑥1, … , 𝑥𝑛 = 𝐶 𝐹1 𝑥1 , … , 𝐹𝑛 𝑥𝑛

• Gaussian copula:

• 𝑈1, … , 𝑈𝑛 is multivariate normal for 𝑈𝑖 = 𝑁−1 𝐹𝑖 𝑥𝑖

• Student-t copula:

• 𝑈1, … , 𝑈𝑛 has multivariat t-dist. 𝑈𝑖 = 𝑇−1 𝐹𝑖 𝑥𝑖

• Archimedian copulas:

• 𝐶𝐴 𝑢1, … , 𝑢𝑛 = φ−1 φ 𝑢1 +⋯+φ 𝑢𝑛

• For example Gumbel copula: φ 𝑢 = −ln 𝑢
𝛼

81
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Illustration – Bivariate Normal Distribution vs. 

Gumbel copula with Normal marginals

82Source: https://en.wikipedia.org/wiki/Copula_(probability_theory)
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83Source: https://en.wikipedia.org/wiki/Financial_correlation

Illustration – Copulas and tail correlation
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Copulas for VaR estimation
• Enable the separate modelling of univariate

distributions of the asset price time series vs. their

interdependencies

• How to proceed:
1. Model each of the return time-series with an univariate model 

that best describes its characteristics (i.e. with stochastic volatility 

and appropriate error term distribution)

2. Use the univariate model and the cumulative distribution function

of the error term distribution to transform each of the time series

into a series of uniformly distributed random variables

3. Apply an appropriate copula model (potentially with dynamic

parameters) to capture the inter-dependency between the time

series

4. To compute VaR and cVaR, first simulate uniformly distributed

random variables from the copula and then transform them into

simulated returns by using the univariate time series models and 

error term distributions
84
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Extreme Value Theory (EVT)

• Idea – we can fit certain distribution only to the tail

of the empirical distribution

• Let 𝑋 be a los variable (negative return) with

distribution 𝐹, and define excess losses as:

• 𝐹𝑢 𝑦 = 𝑃 𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢 =
𝐹 𝑢+𝑦 −𝐹(𝑢)

1−𝐹(𝑢)

• According to Gnedenko, for a wide class of 𝐹 the

excess function 𝐹𝑢 𝑦 converges to the generalized

Pareto cumulative distribution (GPD) 

• We can then use the GPD to estimate: 

• Pr 𝑋 > 𝑥 ≅ 1 − 𝐹(𝑢) 1 − 𝐺𝜉,𝛽 𝑢 (𝑥 − 𝑢)

• We can then solve Pr 𝑋 > 𝑉𝑎𝑅 = 1 − 𝛼

• GPD also enables to calculate the expected shortfall
85
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Generalized Pareto Distribution

Source: https://en.wikipedia.org/wiki/Generalized_Pareto_distribution

86
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Stochastic-Volatility Jump-Diffusion

• Simulation of the market factors with SVJD processes

• Stochastic volatility – Increases the tails of the

return distribution in longer horizons

• Jumps – Increase the tails of the return distribution in 

shorter horizons

• Example – Log-Variance model with Poisson jumps

• Log-Price process:

• Log-Variance process:

• Where:

• The model can further assume correlation between 𝑑𝑧
and 𝑑𝑧𝑉, time-variability of λ, or jumps in ℎ 𝑡

• Parameter estimation methods like MCMC
87

𝑑𝑝 𝑡 = 𝜇𝑑𝑡 + 𝜎 𝑡 𝑑𝑧 𝑡 + 𝑗 𝑡 𝑑𝑞 𝑡

𝑑ℎ 𝑡 = 𝜅 𝜃 − ℎ 𝑡 𝑑𝑡 + ξ𝑑𝑧𝑉 𝑡

ℎ 𝑡 = ln 𝜎2 𝑡 ൯𝑗 𝑡 ~𝑁(𝜇𝐽, 𝜎𝐽 Pr dq t = 1 = λdt
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SVJD models - Example
• Four types of stochastic processes were fitted to the

EUR-USD historical returns time series:

1. Geometric Brownian Motion

2. Log-SV model

3. SVJD model with Poisson jumps

4. SVJD model with Hawkess jumps

• Value at Risk and Expected Shortfall were then

computed by simulating the processes over the 3-

month period into the future

88



European Social Fund Prague & EU: Supporting Your FutureFINACIAL DERIVATIVES II

3-Month VaR estimation with SVJD models

89Source: MATLAB
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