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Martingale and measures
(Interest rate derivatives pricing,
NSA approach)
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Martingales, Measures, and
Numeraires

Interest rates cannot be constant (or
deterministic) valuing interest rate derivatives!!!

Can we still evaluate derivatives taking the
expected payoff and discounting it at the risk-
free rate???

Yes, but a different “risk-neutral measure” must
be used!!!

For example, we would like to make
a martingale

t

P(t,T)

to be



General risk-neutral probabillities

A general discount factor g ... numeraire

Define the risk neutral probability so that

ZO = CIZu + (1_ CI)Zd where Z = E
g

And use the replication argument to show that
f/g is a martingale

S, f,
g,

g ler 1)t =E, {EIO}
% 9. 9a L9

asf =aS+ fg S f
0" 0
9o

Source: Author

Sy, Ty

Jq

The same can be achieved for an n-step tree



Binomial Trees with Infinitesimals

It has been shown (Cox, Ross, Rubinstein) that the
values obtained using n-step binomial trees converge to
the B.-S. value

Binomial trees are in practice used for numerical
approximations of values of American and exotic options

Continuous trading in fact does not exist, real trading is
always discrete. Are not discrete models with small steps
better approximations of the reality than continuous
models???

(Cutland, Kopp, Willinger) Binomial Trees with
Infinitesimals provide (up to an infinitesimal error) the B-
S value



Important Notions Defined on

Binomial Trees
« Conditional expectation

- K@ o .
— to\t [X | @,]= (O)Q;% () P(e)

 Martingale: X(w,)=E[X]|a,] for every
« Markov process E[f(X)|®,] depends only on X (w,)

 stochastic integral, SDE, replication by a
strategy, risk-neutral measure

See e.g. S.Shreve: The Binomial Asset Pricing Model



Market Price of Risk

* Proposition: All derivatives following the price
nrocess of the form dg = xgdt + ogdz have the same
orice of risk defined as u—r

O
where r Is the risk-free rate.

* Proof uses a similar arbitrage argument as in the B-
S model. Given two derivative securities with the
same source of risk combine them to eliminate the
risk in a short time interval dt. The fact that the
portfolio yields the risk-free return leads to the
equation between the corresponding prices of risk.

« Can be generalized for n sources of uncertainty



I\/Iarket Price of Risk equality - Proof el e

We have 2 derivatives with the same source of risk:

o dfi =mfrdt+o01f1dz

o df; = ufrdt +0xfrdz

« We can construct a risk-less portfolio by entering into o, f, units of f;
and —a; f; units of f,

o = (02/2)f1 — (01/1)f>

« The portfolio value will then change according to:

o dll = (0zf2)df; — (o1f1)df,

o dIl = (0,f2)(ufrdt + 01f1dz) — (01f1) (U2 fodt + 0, f,d2)

o dll = (oo11 — o112) f1/2dt
* Since Il is risk-less it must earn the risk-free return

o (Il =7‘Hdt=7‘(0‘2 _O-l)flfzdt

« So we get the following equality We define price of risk
o (oot —o1l2) f12dt =71(0y — 01)f1f2dt (Sharpe ratiol?ﬂ&
o 0OyU; — Oyl =1(03 — 01) 1= H
, BT pa-r o
01 B 02

« The price of risk is same for all derivatives with same sources of risk 10



Equivalent Martingale Measure Usingm
Infinitesimals

Price of Risk: Assume that g has only one
source of uncertainty dg = ¢gdt+ogdz

 Define the price of risk as 1=£="

O

* Let >0 be any other price of risk, then we
can change the measure accordingly

+

p
g(t + dt) =

g(t) g()(1+adt+ovdt) ~

Jai
2

p'=p+(1-4)

1-p’
1-p
Source: Author 11



Change of probability
E’{d_g}=(p+7gj(adt+a\/at)+(1_p_yg]( st )

g
:E{d—g}+27@0ﬁt=E{d—g}+7adt y=A4-4
g 2 g
=(r+Ac+(A —A)o)dt=(r+Ac)dt a=p=r+120

{37} e s

2
{ Eg }+7/—4adt0\/_t E{(dggj }rzyaadt2

var{gg} EK ” { }_va{%g}o(dt):azduo(dt)
12
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Change of Price of Risk

* The previous results show that we can change the drift
and the price of risk, while not changing the variance

« Assume a stochastic proces: dg = ugdt + cgdz

* In order to change the price of risk A = (u —r) /o to an
arbitrary 1, we need to change u =r + Ao to
W =r+Ao=u+A1 —-2Ao
« Probability p in the binomial tree wil change to g:

q=0.5+%\/E=0.5+“+();:‘)Gx/cl_=p+’1’T_’1 dt

13
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Change of Numeraire — Equivalent
Martingale Measure

« Numeraire Is a security (stochastic process) attaining
positive values used as a unit to measure values of other

securities.

 Theorem: If g is a numeraire than there is a measure
(equivalent martingale measure determined by a price of
risk) so that for any security (stochastic process) f with
the same sources of uncertainty f/g is a martingale.

* Proof: Use the Ito lemma applied to In(f ), In(g), and
In(f/g)=In(f )-In(g) to show that if o, is the new price of risk
then f/g has zero drift, i.e. is a martingale.

14



Equivalent Martingale Measure Using

Infinitesimals

« Recall that we have shown that all securities with
the same sources of uncertanity must have the
same price of risk in an equilibrium (non arbitrage)
market

* Show that A'=g; gives the equivalent martingale
measure with respect to g

« This is done, e.g., using the Ito’s lemma which is

easily proved using infinitesimals as dz?= dt
dx =a(x,t)dt +b(x,t)dz, G =G(x,t)
2 2
oG . 9G . 10 dez+___:(ac3 0G 10 szj oG

dG = —dx+ —dt+— > —a+—+—-—; dt + —Dbdz
OX ot 2 OX OX ot 2 oOX OX

15



Equivalent Martingale Measure Using

Infinitisemals - Proof
Assume that the numeraire g(t) follows a process:

dg = pggdt + o,gdz (under the measure P) q=te ™7
Let A be the price of risk, so that u, =r + Ag, g
Changing A to ' = g, will change the drift rate to r + o/ p=r+2Ao

dg = (r + 02)gdt + o,gdz (under the measure Q)

Let f be a derivative following a proces (under the measure Q):

df = (r + oy07)fdt + orfdz

To prove that f/g is martingale, we apply the Ito’'s Lemma to get:
d(In(g)) = (r + 2 — 02/2)dt + 0,dz = (r + 62/2)dt + 0,dz

d(n(f)) = (r + o40; — 0 /2)dt + opdz

By subtracting the two equations we get:

d(In(f/9)) = d(In(f) — In(g)) = (o407 — 0f /2 — o2/2)dt + (o7 — 0,)dz

d(n(f/9)) = d(In(f) - In(g)) = —5 (05 — g,) " dt + (o — 0, )dz
We need to apply Ito’'s Lemma again to f/g = exp(In(f/g))
d(f/9) = (o — g5)(f/g)dz which is a martingale




Applications of Equivalent Martingale

| Measures
 |n partlcular MM account:
10O _¢ { f(T)} r
g(0) | g(T) g(T) = exp ( j r(s)ds>
(1) ;
(0)=9(0)E, { }
(T)
« Examples of numeraires: money market
account, zero coupon bond, annuity Zero-bond.

f(T) P(0,T) = e RrT

(0)=P(0,T)E, { } PO, T)E;[T(T)]

P(T,T)
« Hence the value of f can be calculated as a
,<discounted” expected value of the payoff

Source: Author 17



Standard Market Model
 Assumes that the underlying variable Is
lognormally distributed under the r.n. measure

 In particular If, w.r.t. the P(t,T) risk-neutral
measure, InS; ~ N (InE[S;]-c°T /2,6°T)
* then

f, =P(0,T)E; [max(S; —K,0)]

E, [max(S, - K,0)] = E,[S,IN(d,) - KN(d,)

4 _ In(E[S;]1/K)+0°T /2 d2:In(ET[ST]/K)—azT/ZZdl_G\/_F
1 O‘\/-F Gﬁ

18



Recall Derivation of the BS Formula‘
(for a European Call Option)

Our goal is to calculate E[max(S-K,0)]= T(S —-K)g(S)dS with S=S,

InS [ N(m,wz), where m =1In SO+(r—%aij and w* =o°T.

INS—m 1 _xzp
. _ SYdS = p(X)dX =——¢e dX
Substitute X " and so g(S)dS =p(X) o

0

E[max(S—-K,0)]= [ (™™ =K)p(X)dX =
(InK—m)/w
i 1 (—X2+2Xw+2m)/2 h 1 e
= ——¢€ dX —K —— e 7 dX
(ink my/w N 27T (In ij),w N2

The second integral is easy:
[ e =NCnK-m/w)  NK)=®()=PIX <x]= [ p(X)dX

(In K:[m)lw N2rx
19

FINACIAL DERIVATIVES I



x X +
~E A EN G

0
b

Z
74
O

FINAN EER
Regarding the first integral:
—X?+2Xw+2m (X —w)* +2m+w’
2 2
f 1 (=X 2+2Xw+2m)/2 m+w? /2 T 1 —(X-w)?/2
——e dX =e ——e dX =
(In K'—[m)/w N2r (nK—my/w N 2r
=e™"ZN (w—(InK —m)/ w).
It is easy to check:
~(INK-m)+w* —-InK+InS,+rT -c°T /2+0°T
~(InNK-m)/w= = -
w—(In m)/w v o
_ InSO/K+(r+azT)/2:d
oNT .
InK —m)/w= InS,/K+(r—c°T)/2 _d, aMHWI2 _ alnSe T _ SoerT
oT
AT rT _ _ T
Source: Author Andso  [c=e"" (S N(d,)~KN(d,))=S,N(d,)~e TKN(d,) .
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B.-S. Formula with Stochastic Interest

Rates

« European call on a non dividend stock with

maturity T, then S S
ET[ST]:ET I — :

{P(T,T)} P(O,T)

* Where the expectation is taken with the measure
risk-neutral w.r.t. P(t,T)

« If (1) we assume that In S; is normal (,standard
market model”) and R is the maturity T interest
rate then

c =S N(d)—e " KN(d :In(SolK)+(R+02/2)T
»=SN(d) @) -
P(O,T)=e" ; In(SO/K)+(R—O'2/2)T_d_ F

2 = G\/-F

21



Black’s formula

» Uses futures/forward prices as the key input

« For options on income paying assets and
commodities (or for options on futures) it is more
appropriate to use the Blacks formula based on

0="P(0,T)E[S; - F,]=P(0,T)(E[S;]-F,)
E[S]=F,

 Since S; =F the formula can be stated in terms
of forward/futures price volatility
C, = P(0,T)(F,N(d,)— KN(d,))

In(F,/K)+o2T /2 In(F,/K)-oFT /2
d = 0 F d = 0 F :d — T
S : o NT o7

22



Option to Exchange One Asset for
Another

« Option to exchange one asset U for another
asset V at time T (e.g. convertible bonds)
f, =max(V; —U;,0)

 Letthe numeraire = U, then

_ V. V
fo :UOEU |:maX(Vl-|-J UT;O):| ZUOEU |:maX[L\j_T_1’0j:| EU |:i:| = U—(:)

T T

« Assuming lognormality of U and V

fo :VoN(dl)_UoN(dz) d1:|n(VO/UO)+GﬁT/2
o NT
&, =6 —2p0,, 0, + 07 d2:ln(voluo)—aﬁlezdl_Ghﬁ
o, NT

23

FINACIAL DERIVATIVES I



X X

Content

Introduction — overview of B.-S. option
pricing and hedging

Market Risk Management

Estimating volatilities and correlations

Interest Rate Derivatives Pricing-

Martingale and measures

Standard Market Model

24



Standard Market (Black’s) Model for
Interest rate options

Applicable to bond options, interest rate caps/floors, and
to swap options (swaptions)

Generally use the P(t,T) forward neutral measure and the
assumption of lognormality of the underlying variable V-

If E{[V;] = F, and if the standard deviation of In V; is oVT
then we get the “standard formulas”, e.g. for a European
call option:

In(F, /K)+02T /2

d =
1 GF\/-F

¢, = P(0,T)(F,N(d,) - KN(d,))

In(F,/K)-cfT /2

d, = =d —o T
2 GF\/-F 1 F

25



Bond Options

OTC bond options, embedded options In
callable/puttable bonds, loan prepayment
options and loan commitments

The underlying variable = Q- the cash bond
price, the bond forward value

F =
P(0,T)

where | is the present value of coupons to be
paid (not Al)
Alternatively underlying could be the net price

26



Bond Volatility

» The standard deviation of In Q; = aQ\/T depends on T
and on the bond duration

* Note that we are estimating time T bond price volatility
* 0opcan be estimated from the yield volatility using the

concept of duration

A9 =-DyAy = _Doyoﬂ

Q, Yo

o, = DyY,e0,

Time T volatility
or =D ye0,

std(InQ;) = D, y, o, T
= yFO-y(TM _T)‘/-F

8,00%

7,00% TN
- -
6,00% .
/ N
5,00%

4,00%

N

3,00%

NN

1)
2,00% 1

1,00% f

AN

0,00%

\ Bond maturity

0,00

1,00 2,00 3,00 4,00
Option exercise date T

5,00

6,00

s Sigma_F

== == Bond ret
std

Source: Author
27
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Caps and Floors

Interest rate cap payoff can be expressed as a
set of payoffs of individual caplets

max(R,,; —K,,0) paid at t;,, / N\

Similarly a floor can be decomposed INto  source: Author
floorlets.

Collar is defined as a long position in a cap and
a short position in a floor with the same
underlying and payment times (strike floor <
strike cap)

Note that Value of cap = Value of floor + Value
of swap ...put-call parity...with the same strike

cap(K) — floor(K) =irs(K) 28




Valuation of caps and floors

« The caplets and floorlets can be valued
iIndependently

* The rate observed at t; is payable at t;,,, hence

we need to use P(t, t.,,) forward risk neutral
measure, SO

Fi - Eti+1 I:RMJ:I

and
In(F/K,)+0ot /2
d, =
¢ =L5P(O.t,,) (FN(d) -K,N(d,)) ot
In(F/K,)-o't /2

d, = - d, — o\t

29
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Cap/Floor Volatilities

« Each caplet/floorlet could be valued with
iIndividual (spot) volatility corresponding to the

option maturity

 Alternative possibility (used by the market) Is to
use a single (flat) volatility for all caplets in a cap

p Cap
volatility

Source: John Hull, Options, Maturiﬁy

Futures, and Other Derivatives, 5th
edition Figure 22.3 The volatility hump 30
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x + +
FINANCIAL ENGINEERING

EURCAP=TKFX Totan ICAP-TOK LINKED  DISPLAYS MONEY
TOTAN ICAP
EUR See<TKFXINFO> DEALING

1Y 56.3 57.3 Totan ICAP TOK 15:33

2Y 57.9 58.9 Totan ICAP TOK 15:33

3Y 47 .1 48 .1 Totan ICAP TOK 15:33

4Y 46.6 47 .6 Totan ICAP TOK 15:33

5Y 44 2 45 .2 Totan ICAP TOK 15:33

7Y 38.3 39.3 Totan ICAP TOK 15:33

10Y 32.6 33.6 Totan ICAP TOK 15:33

CAPS/FLOORS
Updated at 20:13:24 o
Currency: (EUR Trade Date: 1222012 =
Type: 'Sell = !!Collar - vanilla A
Main || Volatilities Amortization | ZC Curve
Start Date  Cap Strike Floor Strike Cap Yol Floor ¥ol Forward Premium Notional (Delta - | lGamma -]
14zzoz [ 18000010 0,500000 59,76 55,61 1,365 0,00 1 000000,00 0,0000 10,0000
14gzo0z [ l,SDDDEnr D,BDDDm 59,76 55,61 1,004 -200,35 1 000 000,00 0,3415 -27,1703
14zz013 [ 1,8000010 0,30000 61,66 59,34 0,809 -742,99 1 000000,00 0,5382 29,6361
1482015 [ IJBEIDUEnr D,BUDDEn 62,50 63,21 1,403 974,03 1 000 000,00 0,6560 17,2828
Source: Author 31
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Swaptions

* Options to enter into a certain interest rate
swap at a certain time in the future

« Similarly to caps and floors, can be used
as an interest rate management
iInstrument sold to corporations

* Could be equivalently viewed as an option
on the fixed coupon bond with the strike
equal to the nominal

32



Valuation of European Swaptions

 Use the Black’s model with the assumption that St is
lognormal

. N
* The payoff (fix-payer) £ = Z P(T,T,)5,Lmax(s; —s,,0)
i=1

« To justify the following we in fact need the annuity risk
neutral measure g(t)=A(t)!!!
¢ =LA(0)(s,N(d,) —s,N(d,)) d, =

AD =Y 6PET)

s,-..forward swap rate

In(s, /s )+0T /2

o NT

o NT

Remark: Swaptions can be also valued as bond options, note that the two Black’s
models are not mutually consistent

| /s, )—oT /2
d, = n(So SK) OF =d1—GF\/-F

33



Swaption Volatility Quotations

e Two dimensions: exercise data and the

swap tenor

SWAPTION VOLATILITY

TTKL 1Y 2Y 3Y 4Y 3Y 7Y 10Y
1M EX 51.20 42.90 45.10 43.10 40.30 36.30 34.70
3M EX 55.10 44.70 46.00 43.80 41.00 36.80 35.00
6M EX 57.50 46.40 46.10 43.20 41.00 37.00 35.40
1Y EX 60.60 47.10 45.30 42.70 40.40 36.70 35.00
2Y EX 57.40 44.40 40.30 37.70 36.20 33.80 32.30
3Y EX 47.50 38.50 35.60 33.70 32.50 31.00 29.80
4Y EX 38.70 33.00 31.40 30.40 29.70 28.60 27.70
SY EX 33.20 29.70 28.80 28.10 27.60 26.80 26.40
7Y EX 27.70 26.20 25.70 25.20 24.80 24.60 25.20
10Y EX 23.20 22.80 22.80 22.90 23.10 23.80 24.90
15Y EX 24.30 24.60 25.00 25.40 25.90 26.80 28.20
20Y EX 27.40 28.50 29.00 29.50 29.90 30.60 31.10

Source: Author

34
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Swaption Valuation Example

Value at-the-money swaption with 1Y exercise on a 5Y
swap with 1 mil EUR principal, if the forward swap rate
IS 1.96%.

The volatility quotes are given on the previous slide and
the actual annuity value is 4.7.

The table has two dimensions, exercise times and
tenors, thus the volatility corresponding to our swaption
1S 40.4%.

According to the formula and using the given
parameters, we obtain 17 447 EUR from the perspective
of the fix-rate payer.

35
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Negative Interest Rates and the
Standard Market Model

* The lognormal model is not consistent with

negative interest rates

~ , EUSYCGE=TTKL
Contributor

BROKER

BROKER

KLIEM

CARL KLIEM

CARL KLIEM

KLIEM

BROKER

BROKER

CARL KLIEM

BROKER

CARL KLIEM

CARL KLIEM

KLIEM

CARL KLIEM

BROKER

CARL KLIEM

CARL KLIEM Straddle Premium
CARL KLIEM

CM CIC

KLIEM

KLIEM

KLIEM

KLIEM Source: Author
KLIEM

24 102016 526232 [GMT+1)

EUROND=
EURTND=
EURSND=
EURSWD=
EURZ2WD=
EUR3WD=

[= 3=

T

(=3 WO I,

[o}]

L Lo Ll L Lol L0 L0 o

[{= 8]

counting

Contributor
TULL PBON

Related Data

Loc Time Date
LON 14:48 140CT16

EURCAP=TTKL

24102016 5:24.33 (GMT+1)
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(Bachelier Model)

* One solution is to apply a simple normal
distribution model

dF, = o, dW,
F =F+oW,
F L N(FO,O',iT)
¢, (T,K)=e""E, [max(F; — K,0)]

ex(I.K)=c"|(F, - KN(d)+ odiN'(@)]  d== =

37
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Shifted Lognormal Model
(Displaced Diffusion)

« Another alternative Is to shift the basic
level
dF, =d(F, = ©)=0,,(F, -©)dW,
( |
F, = ®+(FD _G))EXP oo, _EO'E:DIJ
\
» Blacks (1976) formula can be applied

C,(T.K.F)=C,.(I.K-©,F,-0,c™(1,K -0))

impl

Poo(T.K.F)=F,.(T.K~6.F,-0.02%(I.K ~0))

38
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A Note on Binary Options

* A binary (cash) option pays just a fixed
amount Q If it Is exercised, for example a

binary call

¢, =QxI{F >K}

¢, = P(0,T)QxE,[I{F, > K}]=P(0,T)Q x Pr,[F, >K]

* Therefore, Iits valuation is quite simple in

the normal anc

c;' = P(0,T)QN (

F,-K
o\

lognormal models

In(F,/K)-o2T /2

¢, =P(0,T)QON(d,), d,= —

39



A Comparison of the Models

Lognor- .
Category magl Normal Shifted LN
Interest
ate F>0 -00 <F<oo  F>0 (©<0)
Option Black 76 own Shifted
price C/P formula Black‘76
independent dependent ind dent of
.1 independent o
V0|atl|lty of interest on interest _ tp  rat
interest rate
level rate rate
high until unrealistically realistic. but
Degree of 2011, now even deflec- o
lit partly unac tions up and dynamic shift
reall ) i
y ceptable down adjustments
Source: Author 40
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Exotic swaps

Step-up swaps — increasing notional
Amortizing swaps — decreasing notional
Basis swaps — different reference rates

Compounding swaps — the interest payments are
compounded forward to the maturity date

Libor-in-arrears swaps

Constant maturity swaps — floats are swap rates in
arrears with constant maturity

Differential swaps — reference float is in a different
currency than the notional (and payments)

Equity swaps / equity return x fixed return

Accrual swaps, cancelable swaps, cancelable |
compounding swaps, amortizing rate swaps, commodity
swaps, volatility swaps,....

42



Real Life Example

* |n 2003 the City of Prague has entered into a 10
year EUR/CZK cross currency swap with
nominal 170 mil. EUR, fixed coupon in EUR and

float coupon in CZK defined as fix — (IRS10 —
IRS2)

 Different valuations estimated the initial market
value at a loss between 190 to 280 mil. CZK.

Most of the valuations did not use the convexity
adjustment.

43



Convexity Adjustment =~ =
In principle, we need to value f(0) where the payoff
f(T)=s(T) is N year IRS swap rate quoted at time T.

We have shown that if the numeraire A(t) is the sum of
values P(t,T;) of zero-coupon bonds paying 1 at the swap
payment dates T,,...,7, then

s(0) = E,[s(T)], where
S(t) — P(t’TO) o P(t’TN)
A(t)
But it is not correct to replace s(T) with the forward rate In
the normal risk-neutral world!!!

En estimation of the difference between the expected
value in the two measures yields a convexity adjustment

The adjusted market value of the City of Prague swap is
-244 mil. CZK “




Convexity Adjustments in General

If F is the maturity T forward price of an asset with
spot price S then F=E;[S;] w.r.t. P(t,T) risk neutral
measure, but not w.r.t. another measure

If R(t,T,T*) denotes the forward interest rate then
R(O, T, T*)=E[R(T,T,T*)] w.r.t. P(t,T*) risk neutral
measure, but not w.r.t. P(t,T) Il

In general, let an asset price be B=G(y),or y=G*(B)

If B =E;[B] Is the maturity T forward price of B then
we can define the forward rate y-=G(B;)

If G is nonlinear then Br = E{[G(y;)] <> G(E+[y-] ), i.€.

V<> E;[y;] , and an adjustment is needed
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G(X,)

E[G(X)]

G(E[X])
G(Xy)

Source: Author

Jensen’s inequality: If G is convex then

G(E[X])<E[G(X)] 4
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Convexity Adjustment Analyticxal i
Aproximation

Expand G(y;) using a Taylor series at y- up to
the second order element and apply E- to both
sides of the expansion

Approximate  G(y;)=G(ye)+(¥r —¥¢)G'(¥e) +%(VT ~¥e) G (¥e)

To get E [(y; —yF)z]zg Zsz

G”
E [V: 1~ Ve ——yé o,T o ((zF))
F

Apply to swap rates in arrears approximated by
YTM y of a corresponding B, I.e. derivatives
corresponding to the duration and convexity

Or to Interest rates in arrears using
G(y)=1/(1+y(T*-T)) a7




Change of Numeraire

 Sometimes we need to start with one
numeraire g and change it to another
numeraire h. The drift of a derivative f is
then changed by

o= po;o,

 Where w=h/g Is the numeraire ratio and p
the correlation between f and w

* Therefore, If « 1S a constant, then
E.[f(M]=E,[f(T)]e*’
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Change of Numeraire
m m
My :r+zo-g,i0f,i 7 :r+zo-h,i0f,i
i=1 4 ; i=1
m m
Qy = Uy —Hy = Z(Gh,i — Oy, )O-f,i = Zo-w,iaf,i
i=1 i=1
Using lto’s lemma appliedto  Inw=Inh—-Ing
df = u, fdt + Zo-f i fdz, @ dw = g, wdt + Z O'W,inZi
=1 i=1
cov(df ,dw) = EKia” fdzij(iaw,jwdzj ﬂ = (Zm:af,iawyij fwdt
i1 =1 i1
i cov(df ,dw)
Zaw’iaf’i - fw dt = PO+Ow Source: Author
=1
49
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Timing Adjustments

How do we calculate the value of a derivative with
payoff = V; paid at time T*>T ?

We need E;.[V,], but we know E;[V;] = forward
price if V Is a tradable asset

The change of numeraire W=P(t,T*)/P(t,T)
Increases drift of V by a=p,yoyow, I.€. Ex[V{]=
Er[Vi] e

We may In fact express the adjustment in terms of
TxT* interest rate volatility and its correlation with V
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Quantos =

The value of a financial instrument paid in a different (i.e.
“‘wrong”) currency, e.g. Nikkei index value paid in USD

We would like to have E [V;] expressed using E,gy[V-]
= Vg, where V;= Nikkel index value

However, let us use two USD denominated numeraires
h=Pysp(t,T) , 9= Pyen(t,T)/S(1) , @and note that E [Vi] = V¢

To get the adjustment look at the numeraire ratio W=
S(t)Psp(t, T) / Pyen(t, T) = forward exchange rate where S(t)
Is the spot USD/YEN exchange rate

In case of the Nikkel quanto, T=1, we need Nikkel
volatility, 1Y USD/YEN forward volatility, and the
correlation.

Eh [VT 1= Eg [VT ]ePVWUVGWT
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Quantos - Example ~  ~

CME lists Nikkei 225 index futures settled in JPY and in
USD. On February 13, 2012 the closing prices were:
o Nikkei JPY contract = 8935
o Nikkei USD contract = 8965
Historical volatilities and correlations were estimated as:
o Nikkei volatility = 20% p.a.
o USD/JPY volatility = 12% p.a.
o Correlation of Nikkei vs. USD/JPY returns = 35%

According to the formula for quanto adjustment, the
futures price of Nikkel settled in USD should be:

E[IT] — FoepO'WO'IT — 839580'35*0'12*0'2*(5/12) — 8966
Which is close to the quoted price of 8965
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Stochastic Interest Rate Models

The Standard Market Model uses the assumption that interest rates and
bond prices are lognormally distributed at certain point in time in the future

It does not describe the stochastic dynamics of the interest rates
Stochastic Interest Rate Models

1. Short-Rate Models — Model the instantaneous interest rate and use it
to derive the implied movement of the term structure

«  Eqiuilibrium models (Vasicek model, CIR model, etc.)
Non-Arbitrage models (Ho-Lee model, Hull-White model, etc.)
*  One-factor vs. Multi-factor models

2. Term Structure Models — Model the behavior of the whole interest
rate term structure

Heath-Jarrow-Morton (HIJM) model
«  Libor Market Model (LMM)
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Stochastic Models of the Short Rate

The Standard Market Models do not model evolution of
Interest rates in time

Short rate r = instantaneous short rate

The goal is to model r(t) in the traditional risk-neutral
world (numerair = MM account) and use it to obtain the
dynamics of the full term-structure of interest rates

One or more factors: dr =m(r,t)dt +s(r,t)dz

_ 1
_]m)df F(t,T) :ﬁjr(r)dr
P(t,T)=E|e =E[e"V] |

R(t,T) = _Ti—tln P(t,T)



Equilibrium Models

The Initial term structure corresponds to an
equilibrium given by the model, not necessarily
to the observed term structure

The (Dothan) Rendelman and Bartter Model —
geometric Brownian motion

dr = yrdt + ordz

Simple, but does not capture the mean reversion
that can be empirically observed

The money market account value explodes

Analytical tractability only partial, not an affine
model

56



The Vasicek Model
dr=a(b-r)dt+odz

« The stochastic differential equation can be solved
analytically.
* Apply the Ito formula to G(r,t)=e?r in to get
dg = abedt + ge%dz, and solve for r(t) to obtain:
r(t) = f (t,x(t)) =e *r(0) + bL—e ) + e *x(t)
t where
dx =e®dz, i.e. X(t) = jeasdz(s) is normally distributed
0

t

_ 1
Note that we may also analytically express r(t)= " j r(s)ds
0
t 1 0_2
var[x(t)] = [e**ds = —(e** -1 var[r(t)] = —(1-e**

57
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The Mean Reversion property

Apath simulated by the Vasicek's Model

6,00% -
5,00% \ \

4,00%

3,00% -
2,00% - /
—r

1,00% -

0,00%

Source: Author
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The Vasicek Model

* The corresponding (affine) term structure
can be expressed analytically

RE,T)=alt,T)+AET)rt) ... PET)=A{T)e DO
t,T)=B({,T)/(T -t _ a—a(m-t)
AET)=BET)/(T -t) B(t,T):l e
a(t,T)=—(InAt,T))/(T —t) a
B(t,T)-T b—o” 2 2
At,T) =exp (BL.T) +t2(ab o'/2) o'BLT)
a 4a

* Use the Ito formula to set up a PDE for
P(t,T)=f(t,r) and find f in the form

f(t,r)=AtT)e PO
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Affine term-structure models PDE

Affine models are the models where: R(t,T) = e (t,T) + B(t, T)r(t)

Proposition: The short rate model is affine if:  m(r,t) = A(t)r +n(t)
dr = m(r,t)dt +s(r,t)dz s*(r,t)=y(t)r+5

Proof: assume P(t,T)= A(t’T)e—B(t,T)r(t)
then  dP= (A’e‘Br —AB're™™ — ABe "'m+ % AB®s%e™™ ) dt — ABe ""sdz

Ae® —ABe ® — ABe ®'m+ % ABZ2s%e 7B =rAe ™

(A—BU+EBZ5)+(—B'—BA+£BZy—1Jr=0
A 2 2

, 1
We get two -B —BA+§ B’y -1=0, Boundary A(T,T)=1
ODE, that can L conditions: B(T,T)=0
be solved: (In A) —B77+§BZ§=O.
60
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Vasicek Model

A=-a y=0 -B'+aB=1 B(t.T)=
n=ab §5=o° (InA)'=abB—%asz

1_ e—a(T —t)

AT = eXp((B(t,T) -T +t2(a2b—o-2 /2) _ o®B(t,T)?
a 4da

REt,T)=alt,T)+ Bt T)r()
a(t,T)=—(INA{XT))/(T-t) AT)=B(T)/(T-t)

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

alpha beta

\
0.9
— \

_— 0.8 \

/ 0.7 \

/ 0.6 \

/ === alpha gi \ = heta

0:3 \

0.2 —~——

0.1

0 2 4 6 8 10 12

Source: Author
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Vasicek Model - Calibration

The expression for P(t,T) can be used to calibrate the
model to the observed interest rate term structure

o can be estimated from historical interest rates
a and b need to be estimated via calibration
For two maturities the model can be fitted exactly

For more than two maturities, we minimize the sum of
squared errors between the implied and observed
Interest rates

SSE(a, b)=Y,(RM(0,T;) — RV®5(0,T;;a, b, )’

Where RM(0, T;) is the market observed interest rate and
RY45(0,T;; a, b, o) is the interest rate implied by the model
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Vasicek Model — Calibration Example

Vasicek model parameters (B@T)-T +t)(a2b—02 /2) 2Bt T)ZJ
ro 0.07% initial instantaneous interest rate A(t, T)=exp > — '
a 44.57% mean reversion parameter a 4a
b 3.13% long-term interest rate B(t,T) :ﬂ a(t,T)= —(In A(t,T))/(T —t)
sigma 1.00% annual volatility a _
REtT)=at,T)+AET)r) ALT)=BET/(T-1)
Interest rate term structure Calibration
T R A(t,T) B(t,T) alfa(t,T) beta(t,T) R(t,T) Diff DiffA2
0.083 0.14% 0.999952 0.081805 0.000574 0.981655 0.13% 0.01% 1.5708E-08
0.25 0.16% 0.99958 0.236574 0.001679 0.946295 0.24% -0.08% 5.6937E-07
0.5 0.49% 0.998383 0.448201 0.003237 0.896401 0.39% 0.10% 1.0466E-06
1 0.65% 0.993989 0.806858 0.006029 0.806858 0.66% -0.01% 1.1068E-08
2 1.06% 0.979134 1.323528 0.010543 0.661764 1.10% -0.04% 1.7305E-07
3 1.31% 0.958962 1.654376 0.013968 0.551459 1.44% -0.13% 1.5918E-06
4 1.76% 0.935758 1.866234 0.0166 0.466558 1.69% 0.07% 4.4506E-07
5 2.09% 0.91097 2.001896 0.018649 0.400379 1.89% 0.20% 3.861E-06
10 2.27% 0.785258 2.217432 0.024174 0.221743 2.43% -0.16% 2.6653E-06
20 2.67% 0.576248 2.243137 0.027561 0.112157 2.76% -0.09% 8.8538E-07
30 3.01% 0.422539 2.243435 0.028716 0.074781 2.88% 0.13% 1.771E-06
Source: Author sum(diffr2)  1.3035E-05

1. Fill the initial parameters (r0, a, b, sigma), maturites (T) and market rates (R)
2. Compute the values of A(t,T), B(t,T), alfa(t,T), beta(t,T) and R(t,T)
3. Use Solver to find parameters (r0, a, b) that minimize sum{[R-R(t,T)]*2} 63
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Vasicek Model — Calibration Results

Vasicek model fit to the IR curve (31.12.2015)
3.50%
3.00%
2.50%
2.00%

1.50%

Interest rate

1.00%
0.50%
0.00%
0.083 0.25 05 1 2 3 4 5 10 20 30
Maturity

e \arket interest rates — =\/3sicekinterest rates

Vasicek model fit to the IR curve (31.12.2013)

4.50%
4.00%
3.50%
3.00%
2.50%
2.00%
1.50%
1.00%
0.50%

0.00%
0083 025 05 1 2 3 4 5 10 20 30

Maturity

Interest rate

= \arket interest rates — ==mm=V/asicekinterest rates

Source: Author

Interest rate

Interest rate

Vasicek model fit to the IR curve (31.12.2017)

3.00%
2.50%
2.00%
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1.00%
0.50%

0.00%
0.083 0.25 05 1 2 3 4 5 10 20 30

Maturity
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Vasicek model fitto the IR curve (31.12.2007)

5.00%
4.50%
4.00%
3.50%
3.00% -z
2.50%
2.00%
1.50%
1.00%
0.50%
0.00%
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= \larket interest rates — ==mmmV/asicek interest rates

« Vasicek model is unable to accurately fit all possible shapes of the IR curve 64
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Yield on Yield on
Zero-coupon Zero-coupon
bond bond
Maturity Maturity
Yield on
Zero-coupon
bond
Source: John Hull, Options,
Maturity Futures, and Other Derivatives,
5th edition
Figure 23.2 Possible shapes of term structure when the Vasicek model is used
Limited flexibility to fit the initial term structure! 65
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Valuation of zero coupon bond Options

INn the Vasicek Model

For a call option with strike K, maturing at T, on a zero
coupon bond maturing at T* with principal L we may

obtain T )
¢, =E {eXp[_JA r(s)dS] fpayoff (r(T ))} =E [e_r(T)T fpayoff (r(T ))]

¢, =LP(0,T)N(h)—KP(0,T)N(h—0o,)
1. LP(O,TY) o, o arem) [1—e T
o, In POTIK 2 szg(l_e | )) o3
We need to use that r(T) and the r(T) have bivariate
normal distribution with a covariance that can be derived

(Jamshidian); then get the expected value

The PDE for c(t,r) is the same as for P=f(t,r) but there is
a different boundary condition c(T,r)=(f(T,r)-K)*
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Valuation of caps and floors in the
Vasicek Model

Lets consider a caplet on the interest rate Ry (T, T"),
expressed in MM compounding, exercised at time T*,
with a fixed exercise rate Ry

The payoff of the caplet on principal L, discounted to T is:

LRy — R ( _ L(1+ Rgd)

.
1+ Ry 1+ Ry ) = (L= LA+ RxOP(T, T)
Where 6 is the time factor from T to T*

The caplet can thus be valued as a European put option
on the zero coupon bond P(T,T*), multiplied by face
value L(1 + Rx6), with the strike price L

Similarly, floorlet can be valued as a European call option
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Cap valuation — Example (1)

Lets assume we want to value cap on 100 million USD with 5.5 years
to maturity, semi-annual payments and strike price equal to 3% p.a.,
with the valuation done the end of 2015.

We first fit the parameters of the Vasicek model to the interest rate
curve observed on 31.12.2015, we get:

a =44.57%, b = 3.13%, 0 = 1.00% and r, = 0.07%

We can then value individual caplets as put options on zero coupon
bonds P(T,T*), multiplied by face value L(1 + Rxd) and with a strike
price L

The value p, of each caplet can be computed as:

po = LP(0,T)N(—h + op) — L(1 + Rk6)P(0,T*)N(—h)

1 L(]. + RK5)P(O, T*) Op o) * 1-— e_zaT
h — 1 — 1 _ —Cl(T —T)
o P(0,T)L to o= (- ) 24

P(t, T) = A(t, T)e B&DT®
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Source: Author

T*
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5

Cap valuation — Example (2)

The value of the cap is then given as the value of all of the caplets:

1
1.5
2
2.5
3
3.5
4
4.5
5
5.5

A(0,T)
0.998383
0.993989
0.987412
0.979134
0.969546
0.958962
0.947633
0.935758
0.923495

0.91097
0.898281

B(0,T)
0.448201
0.806859
1.093864

1.32353
1.507313
1.654379
1.772065
1.866238
1.941598
2.001902
2.050158

P(0,T)
0.998063
0.993417
0.986641
0.978209
0.968503

0.95783
0.946434
0.934511
0.922215
0.909668
0.896966

P(0,T*)
0.993417
0.986641
0.978209
0.968503

0.95783
0.946434
0.934511
0.922215
0.909668
0.896966

P(T,T*)
0.995344
0.993179
0.991454
0.990078

0.98898
0.988103
0.987402
0.986842
0.986395
0.986037

sigmaP

0.002847
0.003646
0.004076

0.00433
0.004484

0.00458
0.004641
0.004679
0.004704
0.004719

po = LP(0,T)N(=h + ap) — L(1 + R¢8)P(0, T*)N(—h)

1 L(L+Re8PO,TY)  0op
n

Op

P(t,T) = A(t, T)e BEDT(®

P(0,T)L

2

o

Op :_(1

a

h
3.59208039
2.20817939
1.54897371

1.1378589
0.85126904
0.63978848
0.47866391
0.35356593
0.25531928
0.17761254

Cap

_ e—a(T*—T))

p
11.6017235

1745.35668
10615.2945
27135.3698
47934.3092
69692.5572
90229.0028
108400.322
123771.462
136329.271

615864.547

2a
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Valuation of fixed-coupon Bonds In the

Vasicek Model

European call and put options on fixed-coupon bonds can be valued
with the Vasicek model by using the Jamshidian's trick

Value of bond Q at time T is given by a series of discounted cash-
flows C4, ..., C,, that can be represented as a weighted sum of zero-
coupon bonds P(T,T,), ..., P(T,T,,), each depending monotically on
the short rate r(T)

Therefore, considering a time T European call option on a fixed

coupon bond Q = Q(r(T)) with strike price K, there is a rate r* so
that Q(r*) = K, and the call option will be exercised only if r(T) < r*

Payoff on the fixed coupon bond call option (Q(r(T)) — k)™ can
then be represented as a weighted sum of payoffs on the zero
coupon bond call options C; (P(T,T;) — K;)* with strikes K, ..., K,
being the zero coupon bond values corresponding to r* and T;
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Vasicek process simulation - lllustration

Short Rate Paths

010 0415

rt
0.05

-0.05 0.00

Source: https://www.r-bloggers.com/fun-with-the-vasicek-interest-rate-model/

We can see the tendency of the simulations to mean-revert towards
the long-term level (equal to 0.1 in this case) 71

FINACIAL DERIVATIVES lI



The Cox, Ross, Ingersoll Model

dr =a(b—r)dt + o/rdz
 Modeled interest rates always non-negative (might be
negative in the Vasicek model), provided 2ab > &*

- r(t) cannot be expressed analytically as in Vasicek
model, but its distribution yes - non-central chi-
squared

- P(t,T) has an analytical solution — it Is an affine model

* Options on bonds valued by formulas involving
Integral of the non-central chi-squared distribution
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Non-Arbitrage Models

Allow to fit the initial term-structure of interest
rates (no instant arbitrage) which reflects the
expected development of the short rates

The Ho-Lee model — analytically tractable
Gives the classical futures convexity adjustment

dr = 6(t)dt + odz

o(t)=F'(0,t) + ot

F(O,t) ... the forward rate

. 1
Source: John Hull, Options, Futures, and Other Derivatives, 5th edition 73



Ho-Lee model — the formula for &

* The rate r()=r(©)+[o(s)ds +o2(t) is normally
distributed, affine’model, similar option valuation
formulas as for the Vasicek model

_B'=1 B, T)=T —t
: 1 T
(InAY~BO+2 B’o" =0. InAGT)=—[ (T —s)@(s)ds+%02(T _t)
P(t,T)=A(t,T)e " Vr® Take the log, t=0
INnP(0,T)+T -r(0) = —j(r _5)9(5)d5+%ng3 Differentiate w.r.t. T
Result: . °
ot)=F'(0,t)+o°t T2 InPO.T)=-6)+To" And note that
F(LT)=lim f(LT,T,) = —aiTln P(t,T) f(LT,T,) =0 P(t,T%):ITn P(t,T;)

74
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STIR Futures Convexity Adjustment

 The classical STIR convexity adjustment is proved in the
context of Ho-lee model

« The futures rate is a martingale with respect to the
traditional r.n. measure F(,1,T,)=E[F(T,T,T,)], but this is not
the case of the forward rate

dP(t,T) =r(t)P(t, T)dt—(T —t)oP(t,T)dz by Ito’s lemma
From the proces for r we

2 2
df =2 L= == 4, derive proces for P and
2(T, —T,) from it the proces for f
T 2 2 : 1 I
E L (T, —t)* = (T,-t) Drift until maturity for
T)]-f(0,T.,T,) = Ju : dt =

E[f (LT T)]-fOT.T,) !G 2(T,-T,) the forward rate
2
o)

2
- T, 1) —(T, -t ] = Z-1T,.
o L0 (L =T,

2

Moreover F(Tl,leTz):f(TllTliTz) SO F(O,Tl,TZ)—f(O,Tl,TZ)Z%TlTZ- 75



The Hull-White Model

* One Factor — generalization of the Vasicek
model -again analytically tractable

2

dr = (H(t) — ar) dt + odz 6(t) = F'(0,t) +aF (0,t) +Z—a (1-e?™)

Figure 23.4 The Hull-White mode!

Source: John Hull, Options, Futures, and Other Derivatives, 5th edition

In the one-factor models the price of a bond depends just on r(t)
Two — factor Model ... the reversion level given also by another process 76
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Hull-White process simulation

Sample paths of Bond price at time t, exact formula (PtT)

0.12 4.1
= 0.1 =]
E T q4
g ~
2 0.08 E
= S 1.050 i
2 0.06 5
& 8 1
- x
@ 0.04 ]
s 0.02p5 £ 095
@ ‘ ®
& ; o
c OR g 09
2 =
0.02 < 085
[an]
0.04 -

Source: http://www.thetaris.com/wiki/Hull-White_model

Simulations of the Hull-White process can be used for the valuation of
more complex options for which no analytical formulas exist

77
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Other no-arbitrage models

No-Arbitrage CIR model
dr=(8(t) — ar)dt + o+/rdz
Problem: No analytical solutions for 8(t)

Analytical solution exists if we set volatility according to
o(t) =+/0(t)/6 where § > 1/2 (Jamshidian, 1995)

Black-Karasinski model

Generalization of exponential-Vasicek model in which
y = In(r) follows the Vasicek model

The B-K model adds time-dependent coefficients:
dy =(0(t) — a(t)y)dt + o(t)dz

Problem: No analytical solutions, Money Market explodes
78



Short-rate models — Summary
Equilibrium models No-Arbitrage models
(do not fit the zero-curve (do fit the zero-curve Characteristics
perfectly) perfectly)
No mean reversion
Rendelman-Bartter Ho-Lee model Gaussian dlsmbUtl.on
Rate may be negative
Analyticaly tractable
Has mean reversion
Vasicek model Hull-White model Gaussian d|str|but|9n
Rate may be negative
Analyticaly tractable
Has mean reversion
CIR model No-Arbitrage CIR Non-Gaussian .
Rate can not be negative*
Partically tractable
Has mean reversion
Exponential Vasicek Black-Karasinsky Non-Gaussian :
Rate can never be negative
Not tractable
*Rate may become negative due to discretization Source: Author
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Two-factor models

In the one-factor affine models, whole term structure depends on the
short rate r(t) through the equation R(t,T) = a(t,T) + B(t, T)r(t)
Correlation between two rates R(t, T;) and R(t, T,) is thus always 1,

which is unrealistic, and it becomes particularly problematic when
pricing derivatives with payoffs depending on several interest rates

The issue can be solved with two-factor affine models:
R(tr T) — a(t) T) + ﬁl (tl T)xl (t) + :82 (t, T)xz (t)

x1(t) and x,(t) represent the sources of uncertainity, such as the
short-rate and the long-rate

All of the short-rate models can be extended into two-factor or multi-
factor versions

One-Factor models model the shift of the yield-curve, two-factor
models add the slope, and three-factor models the curvature

Brigo and Mercurio (2006) show that the first two components
explain around 90% of the variations of the yield curve, while the
first three components explain 95-99% of the variation
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Two-factor Vasicek Model

« The Two-Factor Vasicek Model looks like:

e Tr=Xx1+ Xy

e dx; =k{(6; —x)dt + 0;dz,

e dx, = k,(0, —x,)dt + 0,dz,

« With instantaneous correlation dz,dz, = pdt

« The model can be extended with deterministic shift:
e T =x1+x, +@(t)

 In order to exactly fit the initial zero-coupon term-

structure (making it a two-factor version of the
Hull-White Model)
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Options on fixed-coupon bonds

In the one-factor models values of zero-coupon bonds
decline with rising short rate

Consequently, a fix coupon bond option can be
decomposed into a series of zero coupon bond options

Calculate the critical short rate r* when the option on
the bond Is exercised

Calculate strike prices of the individual zero coupon
bond options corresponding to r*

Sum up the values of the zero coupon bond options

Remark: the procedure can be also used to value
swaptions



Volatility Structures

 The short rate models determine different
pattern of forward rate volatilities

Figure 30.5 Volatilitj of 3-month forward rate as a function of maturity for (a) the
Ho-Lee model, (b) the Hull-White one-factor model, and (c) the Hull-White two-
factor model (when parameters are chosen appropriately).

Volatlity Volatility
Maturity . Maturity
(a) (b)
Volatility
Meturky Source: Author
©
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HJM (Heath, Jarrow, and Morton)

Term-structure Models
« Allow more flexibility in choosing the volatility term
structure, one or more factors
dE(t, T) =m(t, T)dt +s(t, T)dz(t), fort <T F(0,T)=F, (0,T)

« Starts with a process for the discounted bond price with
the standard risk neutral measure

dP(t,T) =r(t)P(t,T)dt +v(t, T)P(t,T)dz
* Arrives at a process for forward rates

_InP(,T)-InP(t,T,)
Apply Itoo's TLT,T,) = -1|- T 2
Lemma to f >
2 2
df (t7T1’T2) — V(t'TZ) V(t’Tl) dt + V(t’Tl) V(t’TZ) dZ
2(T,-T)) T,-T,
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HJM Interest rate Model

e ...and for instantaneous forward rates

2 . . .
lov(t,T) V(LTI (LT) vr(t,T) is the derivative of
2 OT the zero bond volatility curve

dF(t, T) =v(t, T)v, (t, T)dt —v, (t, T)dz
* Consequently, if we q]odel the forward rates by
V(t,T) =—[s(t,7)dz Note that v(T,T)=0

* Then the following HIM no-arbitrage condition
must be satisfied

m(t,T) = S(t,T)T[S(t, r)dr

To model F(t,T) we just need to estimate s(t) (from historical data),
then we can express the processes r(t)=F(t,t) ..depends also on F(0,t)..
and P(t,T) as well as the corresponding derivatives — fits the current
term structure of interest rates as well as the volatility structure, but in

general the Process is not Markov a5



HJM non-Markovian behavior

The short-rate process in the HIM framework is
non-Markovian

l.e.asr(t) = F(t,t), it holds that:

F(t,t,) = F(0,t) + [ dF (z,t)

Replacing dF (z, t) with the HIM process we get:
r(t) = F(0,8) + [ v(z, )v,(z, t)dt — [ v, (7, £)dz(2)

The third terms depends on the path of zfrom 0 to t

In addition the second term may also become time-
dependent if v(z, t) IS stochastic

The non-Markovian behavior makes binomial trees

non-recombining o6



The Libor Market Model

 The Instantaneous forward rates are not
directly observable on the market — difficult
calibration of the HIM model

* Libor market model is expressed in terms
of forward “Libor” rates

Lil(t)
Uk(f)I

: Forward rate between times ¢, and t,; as seen at time ¢, expressed with a compounding

period of &

: Index for the next reset date at time ¢; this means that m(t) is the smallest integer such

that t < tn:{?]
Volatility of Fi(f) at time ¢

Volatility of the zero-coupon bond price, P(t, t;), at time ¢
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The Libor Market Model

« Forward rates F (t) are martingales With
respect to the P(t,t,,,) risk neutral measure

1 P(,t)—PEt,.,)
O, P(t,t,.,)

dr (t) =g (OF()dz  R(t) =

« But we need to change the numeraire to a
“rolling CD” where the cash is always reinvested
into ,P(t,.t..,)". With respect to the changed

measure h(t) = P(t,t, )h(t, ) P(t, ,.t,)™

dF, (1) = &, (0) (Vg () = Vi1 (1)) R (t)dit + &, (D) F, (£)diz
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LMM change of numeraire

We need to make the process of F; (t) risk-neutral with respect to the
rolling CD account:

h(t) = P(t,t )h(t )Pt ,,t )"
We will apply the change of numeraire technique to change the
numeraire P(t, tx41) t0 P(t, tym(p))
The change of drift will be pa,, a7, where w = P(t, ty ) /P (L, ti41) IS
the numeraire ratio, f = F,(t), and p is the instantaneous correlation
between w and f

If v, (t) denotes the volatility of P(t,t;) and:

dP(t,t,,) = (...)dt + v, P(t,t,,)dz, and by Itoo‘s lemma:

din[P(t,t,,)] = (...)dt + v,,dz, hence

dIn[P(t, t)/P(t, tis1)] = ()dE + (Vi — Vy1)dz

And so the volatility of w = P(t,t,,,) /P(t, ti+1) IS Uy, — Vgyq

As In one-factor model p = 1, it holds that with respect to CD account:

dF, (t) = & (1) (Vi (1) =V, (V) ) F (Ot + &, (1) F (t)dlz a5



The Libor Market Model

Since InP(t,t,)-InP(t,t,.,) = In(1+5,F, ()
 using Ito’s lemma we obtain

_ 8L MR
Vi (t) _Vk+1(t) - 1+5k Fk (t)
And so by induction
5 (OF ()

V (’[) Vk+1(t) Z(V V|+1) Z 1_|_5|:('[)

dF, () = Z A kF(t()g Or (dt+¢, OF Odz

The model is usually simplified assuming that ¢, are constant between t, and t;,,
The volatilities can be obtained e.g. from caplet volatilities.

Starting from initial forward rates the futures rates can be Monte Carlo simulated
To value more complex derivatives e.g. ratchet/sticky/flexi caps, swaptions, etc.

The model can be extended to several independent factors.



LMM Implementation

« Volatilities ¢:(t)=A, ., can be obtained from caplet

guotations
0'22t2 = Aftl + Ag (t,-t) Etc.

» Monte Carlo simulation of F, from {; to t;,,

kK OR()A_ A A2
|'[O dlIn Fk(t):[ Z ' '() i-m(t)* *k-m(t) Y k-m(t)

]dt + A )02

i=m(t) 1+06.F (1) 2
Sample &, ~N(0,1), j=0,1,...
and set F(t.,)=F(t)e" k=j+1..

J

K 2
where | oA e Ao |5 0o
S 1+6R(t) g |71 Tk
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IR models comparison

Cerny (2011) in his diploma thesis on ,Stochastic Interest Rate
Modelling” (p.84) compares different interest models for the
valuation of a complex City of Prague swap entered in 2006

The valuation results at contract start are as follows:

Source: Author

Model Mean PV (mil CZK) |Std. Dev. (mil CZK)

Vasicek -118.5 13.1
Hull-White -131.8 18.6
Ho-Lee -108.6 99.5
LMM -98.3 124.1

We can see that while all of the models estimated the value as

strongly negative, standard deviation predicted by Ho-Lee and LMM

model are much greater than for Vasicek and Hull-White




EVROPSKA UNIE
Evropské strukturalni a investiéni fondy

Operacéni program Vyzkum, vyvoj a vzdélavani

Toto dilo podléha licenci Creative Commons @ @ @

Uvedte puvod — Zachovejte licenci 4.0 Mezindrodni.



