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Martingale and measures 

(interest rate derivatives pricing, 

NSA approach)
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Martingales, Measures, and 

Numeraires

• Interest rates cannot be constant (or 

deterministic) valuing interest rate derivatives!!!

• Can we still evaluate derivatives taking the 

expected payoff and discounting it at the risk-

free rate???

• Yes, but a different “risk-neutral measure” must 

be used!!!

• For example, we would like to make           to be 

a martingale 
( , )

tf

P t T
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General risk-neutral probabilities

• A general discount factor g … numeraire

• Define the risk neutral probability so that

• And use the replication argument to show that 

f/g is a martingale

• The same can  be achieved for an n-step tree

as Sf g 
0 0
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Binomial Trees with Infinitesimals

• It has been shown (Cox, Ross, Rubinstein) that the 
values obtained using n-step binomial trees converge to 
the B.-S. value

• Binomial trees are in practice used for numerical 
approximations of values of American and exotic options

• Continuous trading in fact does not exist, real trading is 
always discrete. Are not discrete models with small steps 
better approximations of the reality than continuous 
models???

• (Cutland, Kopp, Willinger) Binomial Trees with 
infinitesimals provide (up to an infinitesimal error) the B-
S value
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Important Notions Defined on 

Binomial Trees
• Conditional expectation

• Martingale:                           for every   

• Markov process                   depends only on

• stochastic integral, SDE, replication by a 

strategy, risk-neutral measure

0

0t

 ( )X 
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0
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 

 
¸

t

See e.g. S.Shreve: The Binomial Asset Pricing Model

0 0[( ]) |E XX   0

0[ ( ) ]|E f X 
0( )X 

Source: Author
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Market Price of Risk
• Proposition: All derivatives following the price 

process of the form                       have the same 
price of risk defined as

where r is the risk-free rate.

• Proof uses a similar arbitrage argument as in the B-
S model. Given two derivative securities with the 
same source of risk combine them to eliminate the 
risk in a short time interval dt. The fact that the 
portfolio yields the risk-free return leads to the 
equation between the corresponding prices of risk.   

• Can be generalized for n sources of uncertainty          

gdt dzdg g 

r






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Market Price of Risk equality - Proof
• We have 2 derivatives with the same source of risk:

• 𝑑𝑓1 = 𝜇1𝑓1𝑑𝑡 + 𝜎1𝑓1𝑑𝑧

• 𝑑𝑓2 = 𝜇2𝑓2𝑑𝑡 + 𝜎2𝑓2𝑑𝑧

• We can construct a risk-less portfolio by entering into 𝜎2𝑓2 units of 𝑓1
and −𝜎1𝑓1 units of 𝑓2

• Π = 𝜎2𝑓2 𝑓1 − 𝜎1𝑓1 𝑓2
• The portfolio value will then change according to:

• 𝑑Π = 𝜎2𝑓2 𝑑𝑓1 − 𝜎1𝑓1 𝑑𝑓2
• 𝑑Π = 𝜎2𝑓2 𝜇1𝑓1𝑑𝑡 + 𝜎1𝑓1𝑑𝑧 − 𝜎1𝑓1 𝜇2𝑓2𝑑𝑡 + 𝜎2𝑓2𝑑𝑧

• 𝑑Π = 𝜎2𝜇1 − 𝜎1𝜇2 𝑓1𝑓2𝑑𝑡

• Since Π is risk-less it must earn the risk-free return

• 𝑑Π = 𝑟Π𝑑𝑡 = 𝑟 𝜎2 − 𝜎1 𝑓1𝑓2𝑑𝑡

• So we get the following equality

• 𝜎2𝜇1 − 𝜎1𝜇2 𝑓1𝑓2𝑑𝑡 = 𝑟 𝜎2 − 𝜎1 𝑓1𝑓2𝑑𝑡

• 𝜎2𝜇1 − 𝜎1𝜇2 = 𝑟 𝜎2 − 𝜎1

•
𝜇1−𝑟

𝜎1
=

𝜇2−𝑟

𝜎2

• The price of risk is same for all derivatives with same sources of risk

We define price of risk

(Sharpe ratio) as:

𝜆 =
𝜇 − 𝑟

𝜎
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Equivalent Martingale Measure Using 

Infinitesimals

• Price of Risk: Assume that g has only one

source of uncertainty

• Define the price of risk as

• Let ’>0 be any other price of risk, then we

can change the measure accordingly

gdt dzdg g 

r







( )g t

p

1 p
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(
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g t d

g t

t

adt dt

 



'( )
2

'p p
dt

  





1 'p

Source: Author
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𝑎 = 𝜇 = 𝑟 + 𝜆𝜎

Source: Author
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Change of Price of Risk
• The previous results show that we can change the drift 

and the price of risk, while not changing the variance

• Assume a stochastic proces: 𝑑𝑔 = 𝜇𝑔𝑑𝑡 + σ𝑔𝑑𝑧

• In order to change the price of risk 𝜆 = (𝜇 − 𝑟)/σ to an

arbitrary 𝜆′, we need to change 𝜇 = 𝑟 + 𝜆σ to

𝜇′ = 𝑟 + 𝜆′σ = 𝜇 + 𝜆′ − 𝜆 σ

• Probability 𝑝 in the binomial tree wil change to 𝑞:

• 𝑞 = 0.5 +
𝜇′

2σ
𝑑𝑡 = 0.5 +

𝜇+ 𝜆′−𝜆 σ

2σ
𝑑𝑡 = 𝑝 +

𝜆′−𝜆

2
𝑑𝑡
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Change of Numeraire – Equivalent

Martingale Measure
• Numeraire is a security (stochastic process) attaining 

positive values used as a unit to measure values of other 

securities.

• Theorem: If g is a numeraire than there is a measure 

(equivalent martingale measure determined by a price of 

risk) so that for any security (stochastic process) f with 

the same sources of uncertainty f/g is a martingale.

• Proof: Use the Ito lemma applied to ln(f ), ln(g), and 

ln(f/g)=ln(f )-ln(g) to show that if g is the new price of risk 

then f/g has zero drift, i.e. is a martingale.
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Equivalent Martingale Measure Using

Infinitesimals
• Recall that we have shown that all securities with

the same sources of uncertanity must have the 

same price of risk in an equilibrium (non arbitrage) 

market

• Show that ’=g gives the equivalent martingale 

measure with respect to g

• This is done, e.g., using the Ito’s lemma which is 

easily proved using infinitesimals as dz2= dt

2

2

2 2
2

2

( , ) ( , ) , ( , )

1 1

2 2

dx a x t dt b x t dz G G x t

G G G G G G G
dG dx dt dx a b dt bdz

x t x x t x x

  

       
        
       
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Equivalent Martingale Measure Using

Infinitisemals - Proof
• Assume that the numeraire 𝑔(t) follows a process:

• 𝑑𝑔 = 𝜇𝑔𝑔𝑑𝑡 + 𝜎𝑔𝑔𝑑𝑧 (under the measure P)

• Let 𝜆 be the price of risk, so that 𝜇𝑔 = 𝑟 + 𝜆𝜎𝑔

• Changing 𝜆 to 𝜆′ = 𝜎𝑔 will change the drift rate to 𝑟 + 𝜎𝑔
2

• 𝑑𝑔 = 𝑟 + 𝜎𝑔
2 𝑔𝑑𝑡 + 𝜎𝑔𝑔𝑑𝑧 (under the measure Q)

• Let 𝑓 be a derivative following a proces (under the measure Q):

• 𝑑𝑓 = 𝑟 + 𝜎𝑔𝜎𝑓 𝑓𝑑𝑡 + 𝜎𝑓𝑓𝑑𝑧

• To prove that Τ𝑓 𝑔 is martingale, we apply the Ito‘s Lemma to get:

• 𝑑 ln(𝑔) = 𝑟 + 𝜎𝑔
2 − Τ𝜎𝑔

2 2 𝑑𝑡 + 𝜎𝑔𝑑𝑧 = 𝑟 + Τ𝜎𝑔
2 2 𝑑𝑡 + 𝜎𝑔𝑑𝑧

• 𝑑 ln(𝑓) = 𝑟 + 𝜎𝑔𝜎𝑓 − Τ𝜎𝑓
2 2 𝑑𝑡 + 𝜎𝑓𝑑𝑧

• By subtracting the two equations we get:

• 𝑑 ln(𝑓/𝑔) = 𝑑 ln 𝑓 − ln 𝑔 = 𝜎𝑔𝜎𝑓 − Τ𝜎𝑓
2 2 − Τ𝜎𝑔

2 2 𝑑𝑡 + 𝜎𝑓 − 𝜎𝑔 𝑑𝑧

• 𝑑 ln(𝑓/𝑔) = 𝑑 ln 𝑓 − ln 𝑔 = −
1

2
𝜎𝑓 − 𝜎𝑔

2
𝑑𝑡 + 𝜎𝑓 − 𝜎𝑔 𝑑𝑧

• We need to apply Ito‘s Lemma again to 𝑓/𝑔 = exp ln(𝑓/𝑔)

• 𝑑 𝑓/𝑔 = 𝜎𝑓 − 𝜎𝑔 (𝑓/𝑔)𝑑𝑧 which is a martingale

𝜆 =
𝜇𝑔 − 𝑟

𝜎𝑔

𝜇′ = 𝑟 + 𝜆′σ
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Applications of Equivalent Martingale 

Measures
• In particular

• Examples of numeraires: money market 

account, zero coupon bond, annuity

• Hence the value of f can be calculated as a 

„discounted“ expected value of the payoff

(0) ( )

(0) ( )

( )
(0) (0)

( )

g

g

f f T
E

g g T

f T
f g E

g T





 
 





 
 

( )
(0) (0, ) (0, ) [ ( )]

( , )
T T

f T
f P T E P T E f T

P T T

 
  

 

𝑔 𝑇 = exp න

0

𝑇

𝑟 𝑠 𝑑𝑠

MM account:

Zero-bond:

𝑃 0, 𝑇 = 𝑒−𝑅𝑇𝑇

Source: Author
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Standard Market Model

• Assumes that the underlying variable is 

lognormally distributed under the r.n. measure

• In particular if, w.r.t. the P(t,T) risk-neutral 

measure,                                            

• then

18

 0 (0, ) max( ,0)TTf P T E S K 

 2 2ln l~ ,n [ / 2]T TS N E S T T 

  1 2max( ,0) [ ] ( ( ))T T TTE S K E S N d KN d 

  2

1

ln [ ] / / 2T TE S K
d

T

T






 
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2ln [ ] / / 2T T
T

E S K T
d

T
d







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Recall Derivation of the BS Formula

(for a European Call Option)
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The second integral is easy:



FINACIAL DERIVATIVES II

20

Derivation of the BS Formula

Regarding the first integral:

2 2 22 (2 2

2 2

) mX wXw m X w     


2 2 2

2

( 2 )/2 ( ) /22 /2

(ln )/ (ln )/

/2

1 1

( (ln )

2 2

) / .

X X

K

w m m w

m w K m w

X w

m w

e dX e e dX

e N w K m w

 

 
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









 

  

 

It is easy to check:
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Source: Author



FINACIAL DERIVATIVES II

21

B.-S. Formula with Stochastic Interest 

Rates
• European call on a non dividend stock with 

maturity T, then

• Where the expectation is taken with the measure 
risk-neutral w.r.t. P(t,T)

• If (!!!) we assume that ln ST is normal („standard 
market model“) and R is the maturity T interest 
rate then

0 0 1 2)( )(RTe dc S N KNd 
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Black’s formula

• Uses futures/forward prices as the key input

• For options on income paying assets and 

commodities (or for options on futures) it is more 

appropriate to use the Blacks formula based on

• Since          the formula can be stated in terms 

of forward/futures price volatility 

22
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Option to Exchange One Asset for 

Another
• Option to exchange one asset U for another 

asset V at time T (e.g. convertible bonds)

• Let the numeraire = U, then

• Assuming lognormality of U and V

max( ,0)T T Tf V U 
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00 0
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Content
 Introduction – overview of B.-S. option 

pricing and hedging

 Market Risk Management

 Estimating volatilities and correlations

 Interest Rate Derivatives Pricing-

Martingale and measures

 Standard Market Model
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Standard Market (Black’s) Model for

interest rate options

• Applicable to bond options, interest rate caps/floors, and 
to swap options (swaptions)

• Generally use the P(t,T) forward neutral measure and the 
assumption of lognormality of the underlying variable VT

• If ET[VT] = F0 and if the standard deviation of ln VT is T 
then we get the “standard formulas”, e.g. for a European 
call option:
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Bond Options
• OTC bond options, embedded options in 

callable/puttable bonds, loan prepayment 
options and loan commitments

• The underlying variable = QT the cash bond 
price, the bond forward value

• where I is the present value of coupons to be 
paid (not AI)

• Alternatively underlying could be the net price

0
0

(0, )

Q I
F

P T


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Bond Volatility
• The standard deviation of ln QT = QT depends on T

and on the bond duration

• Note that we are estimating time T bond price volatility

• Q can be estimated from the yield volatility using the 

concept of duration
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Caps and Floors
• Interest rate cap payoff can be expressed as a 

set of payoffs of individual caplets

• Similarly a floor can be decomposed into 
floorlets. 

• Collar is defined as a long position in a cap and 
a short position in a floor with the same 
underlying and payment times (strike floor <  
strike cap)

• Note that Value of cap = Value of floor + Value 
of swap …put-call parity…with the same strike

, 1max( ,0) paid at M i u iR K t 

( ) ( ) ( )cap K floor K irs K 

Source: Author
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Valuation of caps and floors
• The caplets and floorlets can be valued 

independently

• The rate observed at ti is payable at ti+1, hence 
we need to use P(t, ti+1) forward risk neutral 
measure, so
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Cap/Floor Volatilities
• Each caplet/floorlet could be valued with 

individual (spot) volatility corresponding to the 

option maturity

• Alternative possibility (used by the market) is to 

use a single (flat) volatility for all caplets in a cap

Source: John Hull, Options, 

Futures, and Other Derivatives, 5th 

edition



FINACIAL DERIVATIVES II

Cap/Floor Quotations

31

 

 

Source: Author



FINACIAL DERIVATIVES II

32

Swaptions

• Options to enter into a certain interest rate 

swap at a certain time in the future

• Similarly to caps and floors, can be used 

as an interest rate management 

instrument sold to corporations

• Could be equivalently viewed as an option 

on the fixed coupon bond with the strike 

equal to the nominal
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Valuation of European Swaptions
• Use the Black’s model with the assumption that sT is 

lognormal

• The payoff (fix-payer)

• To justify the following we in fact need the annuity risk 

neutral measure g(t)=A(t)!!!
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Swaption Volatility Quotations

• Two dimensions: exercise data and the 

swap tenor

34

 

Source: Author
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Swaption Valuation Example

• Value at-the-money swaption with 1Y exercise on a 5Y 

swap with 1 mil EUR principal, if the  forward swap rate 

is  1.96%. 

• The volatility quotes are given on the previous slide and 

the actual annuity value is 4.7. 

• The table has two dimensions, exercise times and 

tenors, thus the volatility corresponding to our swaption

is 40.4%. 

• According to the formula and using the given 

parameters, we obtain 17 447 EUR from the perspective 

of the fix-rate payer. 

35
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Negative Interest Rates and the

Standard Market Model

• The lognormal model is not consistent with 

negative interest rates

36

Source: Author
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The Normal Distribution Model

(Bachelier Model)
• One solution is to apply a simple normal 

distribution model

37
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Shifted Lognormal Model 

(Displaced Diffusion) 
• Another alternative is to shift the basic 

level

• Blacks (1976) formula can be applied 

38
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A Note on Binary Options

• A binary (cash) option pays just a fixed 

amount Q if it is exercised, for example a 

binary call

• Therefore, its valuation is quite simple in 

the normal and lognormal models
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models

• Volatility smiles
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• Numerical methods for option pricing

• Credit derivatives
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Exotic swaps
• Step-up swaps – increasing notional

• Amortizing swaps – decreasing notional

• Basis swaps – different reference rates

• Compounding swaps – the interest payments are 
compounded forward to the maturity date

• Libor-in-arrears swaps

• Constant maturity swaps – floats are swap rates in 
arrears with constant maturity

• Differential swaps – reference float is in a different 
currency than the notional (and payments)

• Equity swaps / equity return x fixed return

• Accrual swaps, cancelable swaps, cancelable 
compounding swaps, amortizing rate swaps, commodity 
swaps, volatility swaps,….
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Real Life Example

• In 2003 the City of Prague has entered into a 10 
year EUR/CZK cross currency swap with 
nominal 170 mil. EUR, fixed coupon in EUR and 
float coupon in CZK defined as fix – (IRS10 –
IRS2)

• Different valuations estimated the initial market 
value at a loss between 190 to 280 mil. CZK. 
Most of the valuations did not use the convexity 
adjustment.
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Convexity Adjustment
• In principle, we need to value f(0) where the payoff

f(T)=s(T) is N year IRS swap rate quoted at time T.

• We have shown that if the numeraire A(t) is the sum of 

values P(t,Ti) of zero-coupon bonds paying 1 at the swap 

payment dates T1,…,TN then

• But it is not correct to replace s(T) with the forward rate in 

the normal risk-neutral world!!!

• En estimation of the difference between the expected 

value in the two measures yields a convexity adjustment

• The adjusted market value of the City of Prague swap is 

-244 mil. CZK
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Convexity Adjustments in General

• If F is the maturity T forward price of an asset with 

spot price S then F=ET[ST] w.r.t. P(t,T) risk neutral 

measure, but not w.r.t. another measure

• If R(t,T,T*) denotes the forward interest rate then 

R(0,T,T*)=ET*[R(T,T,T*)] w.r.t. P(t,T*) risk neutral 

measure, but not w.r.t.  P(t,T) !!!

• In general, let an asset price be B=G(y),or y=G-1(B)

• If BF =ET[BT] is the maturity T forward price of B then 

we can define the forward rate yF=G-1(BF) 

• If G is nonlinear then BF = ET[G(yT)] <> G(ET[yT] ), i.e. 

yF<> ET[yT] , and an adjustment is needed
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Convexity adjustment

46    ( )G E X E G X

Jensen’s inequality: If G is convex then 

E[X]X1 X2

G(X1)

G(E[X])

G(X2)

E[G(X)]

Source: Author
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Convexity Adjustment Analytical

Aproximation
• Expand G(yT) using a Taylor series at yF up to 

the second order element and apply ET to both 
sides of the expansion

• Approximate

• To get 

• Apply to swap rates in arrears approximated by 
YTM y of a corresponding B, i.e. derivatives 
corresponding to the duration and convexity

• Or to interest rates in arrears using 
G(y)=1/(1+y(T*-T))
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Change of Numeraire

• Sometimes we need to start with one 

numeraire g and change it to another  

numeraire h. The drift of a derivative f is 

then changed by 

• Where w=h/g is the numeraire ratio and 
the correlation between f and w

• Therefore, if    is a constant, then

f w  

   ( ) ( )h g

TE f T E f T e
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Timing Adjustments

• How do we calculate the value of a derivative with 

payoff = VT paid at time T*>T ?

• We need ET*[VT], but we know ET[VT] = forward 

price if V is a tradable asset

• The change of numeraire W=P(t,T*)/P(t,T)

increases drift of V by =VWVW,, i.e. ET*[VT]=

ET[VT] eT

• We may in fact express the adjustment in terms of 

T×T* interest rate volatility and its correlation with V
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Quantos
• The value of a financial instrument paid in a different (i.e. 

“wrong”) currency, e.g. Nikkei index value paid in USD

• We would like to have EUSD[VT] expressed using EYEN[VT]

= VF, where VT= Nikkei index value

• However, let us use two USD denominated numeraires

h= PUSD(t,T) , g= PYEN(t,T)/S(t) , and note that Eg[VT] = VF

• To get the adjustment look at the numeraire ratio W= 

S(t)PUSD(t,T) / PYEN(t,T) = forward exchange rate where S(t)

is the spot USD/YEN exchange rate

• In case of the Nikkei quanto, T=1, we need Nikkei

volatility, 1Y USD/YEN forward volatility, and the

correlation. 
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Quantos - Example
• CME lists Nikkei 225 index futures settled in JPY and in 

USD. On February 13, 2012 the closing prices were:

o Nikkei JPY contract = 8935

o Nikkei USD contract = 8965

• Historical volatilities and correlations were estimated as:

o Nikkei volatility = 20% p.a.

o USD/JPY volatility = 12% p.a.

o Correlation of Nikkei vs. USD/JPY returns = 35%

• According to the formula for quanto adjustment, the

futures price of Nikkei settled in USD should be:

• 𝐸 𝐼𝑇 = 𝐹0𝑒
𝜌𝜎𝑤𝜎𝐼𝑇 = 8395𝑒0.35∗0.12∗0.2∗(5/12) = 8966

• Which is close to the quoted price of 8965
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Stochastic Interest Rate Models
• The Standard Market Model uses the assumption that interest rates and 

bond prices are lognormally distributed at certain point in time in the future

• It does not describe the stochastic dynamics of the interest rates

• Stochastic Interest Rate Models

1. Short-Rate Models – Model the instantaneous interest rate and use it

to derive the implied movement of the term structure

• Eqiuilibrium models (Vasicek model, CIR model, etc.)

• Non-Arbitrage models (Ho-Lee model, Hull-White model, etc.)

• One-factor vs. Multi-factor models

2. Term Structure Models – Model the behavior of the whole interest

rate term structure

• Heath-Jarrow-Morton (HJM) model

• Libor Market Model (LMM)
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Stochastic Models of the Short Rate

• The Standard Market Models do not model evolution of 

interest rates in time

• Short rate r = instantaneous short rate

• The goal is to model r(t) in the traditional risk-neutral 

world (numerair = MM account) and use it to obtain the 

dynamics of the full term-structure of interest rates

• One or more factors:
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Equilibrium Models
• The initial term structure corresponds to an 

equilibrium given by the model, not necessarily 
to the observed term structure

• The (Dothan) Rendelman and Bartter Model –
geometric Brownian motion

• Simple, but does not capture the mean reversion 
that can be empirically observed

• The money market account value explodes

• Analytical tractability only partial, not an affine 
model

rdt dzdr r 
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The Vasicek Model

• The stochastic differential equation can be solved 

analytically. 

• Apply the Ito formula to G(r,t)=eatr in to get

𝑑𝑔 = 𝑎𝑏𝑒𝑎𝑡𝑑𝑡 + 𝜎𝑒𝑎𝑡𝑑𝑧, and solve for r(t) to obtain:
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The Vasicek Model

• The corresponding (affine) term structure 

can be expressed analytically

• Use the Ito formula to set up a PDE for 

P(t,T)=f(t,r) and find f in the form
( , ) ( )( , ) ( , ) B t T r tf t r A t T e

( , ) ( )( , ) ( , ) B t T r tP t T A t T e

( )

( ,
1

)
a T te

B t T
a

 


  2 2 2 2

2

( , ) / 2 ( , )
( , ) exp

4

B t T T t a Bb t T
A t T

a a

   
 









( , ), () ( , ) )(R t t T t T r tT   …

   ( , ) ln ( , ) /t T A t T T t   

 ( , ) ( , ) /t T B t T T t  



FINACIAL DERIVATIVES II

Affine term-structure models PDE

60

( , ), () ( , ) )(R t t T t T r tT  Affine models are the models where:

(( ), () )t tr t rm  Proposition: The short rate  model is affine if:
2( , ) ( )t rs r t  

Proof: ( , ) ( )( , ) ( , ) B t T r tP t T A t T e

2 21

2

Br Br Br Br BrdP A e AB re ABe m AB s e dt ABe sdz     
      

 

2 21

2

Br Br Br Br BrA e AB e ABe m AB s e rAe        

2 21 1
0

2 2
1

A
B B B B B r

A
   

   
         

  




 

2

2

1
0,

2

1
ln 0

1

.
2

B B B

A B B

 

 

   

   

assume

then

We get two 

ODE, that can 

be solved:

( , ) 1A T T 

( , ) 0B T T 

Boundary 

conditions:

( , ) ( , )dr m r t dt s r t dz 



FINACIAL DERIVATIVES II

Vasicek Model
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Vasicek Model - Calibration
• The expression for 𝑃(𝑡, 𝑇) can be used to calibrate the

model to the observed interest rate term structure

• 𝜎 can be estimated from historical interest rates

• 𝑎 and 𝑏 need to be estimated via calibration

• For two maturities the model can be fitted exactly

• For more than two maturities, we minimize the sum of

squared errors between the implied and observed

interest rates

• Where 𝑅𝑀 0, 𝑇𝑖 is the market observed interest rate and 

𝑅𝑉𝑎𝑠 0, 𝑇𝑖; 𝑎, 𝑏, 𝜎 is the interest rate implied by the model

𝑆𝑆𝐸 𝑎, 𝑏 =σ𝑖 𝑅
𝑀 0, 𝑇𝑖 − 𝑅𝑉𝑎𝑠 0, 𝑇𝑖; 𝑎, 𝑏, 𝜎

2



FINACIAL DERIVATIVES II

63

Vasicek Model – Calibration Example

1. Fill the initial parameters (r0, a, b, sigma), maturites (T) and market rates (R)

2. Compute the values of A(t,T), B(t,T), alfa(t,T), beta(t,T) and R(t,T)

3. Use Solver to find parameters (r0, a, b) that minimize sum{[R-R(t,T)]^2}

Vasicek model parameters

r0 0.07% initial instantaneous interest rate

a 44.57% mean reversion parameter

b 3.13% long-term interest rate

sigma 1.00% annual volatility

Interest rate term structure Calibration

T R A(t,T) B(t,T) alfa(t,T) beta(t,T) R(t,T) Diff Diff^2

0.083 0.14% 0.999952 0.081805 0.000574 0.981655 0.13% 0.01% 1.5708E-08

0.25 0.16% 0.99958 0.236574 0.001679 0.946295 0.24% -0.08% 5.6937E-07

0.5 0.49% 0.998383 0.448201 0.003237 0.896401 0.39% 0.10% 1.0466E-06

1 0.65% 0.993989 0.806858 0.006029 0.806858 0.66% -0.01% 1.1068E-08

2 1.06% 0.979134 1.323528 0.010543 0.661764 1.10% -0.04% 1.7305E-07

3 1.31% 0.958962 1.654376 0.013968 0.551459 1.44% -0.13% 1.5918E-06

4 1.76% 0.935758 1.866234 0.0166 0.466558 1.69% 0.07% 4.4506E-07

5 2.09% 0.91097 2.001896 0.018649 0.400379 1.89% 0.20% 3.861E-06

10 2.27% 0.785258 2.217432 0.024174 0.221743 2.43% -0.16% 2.6653E-06

20 2.67% 0.576248 2.243137 0.027561 0.112157 2.76% -0.09% 8.8538E-07

30 3.01% 0.422539 2.243435 0.028716 0.074781 2.88% 0.13% 1.771E-06

sum(diff^2) 1.3035E-05

( , ), () ( , ) )(R t t T t T r tT  

   ( , ) ln ( , ) /t T A t T T t   
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)
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B t T
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 


  2 2 2 2

2
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4

B t T T t a Bb t T
A t T

a a

   
 









Source: Author
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Vasicek Model – Calibration Results

• Vasicek model is unable to accurately fit all possible shapes of the IR curve
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Vasicek Model

Limited flexibility to fit the initial term structure!

Source: John Hull, Options, 

Futures, and Other Derivatives, 

5th edition
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• For a call option with strike K, maturing at T, on a zero 

coupon bond maturing at T* with principal L we may 

obtain

• We need to use that r(T) and the have bivariate 

normal distribution with a covariance that can be derived

(Jamshidian); then get the expected value

• The PDE for c(t,r) is the same as for P=f(t,r) but there is 

a different boundary condition c(T,r)=(f(T,r)-K)+

Valuation of zero coupon bond Options 

in the Vasicek Model

*

0 (0, ) ( ) (0, ) ( )Pc LP T N h KP T N h   
*1 (0, )

ln
(0, ) 2
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P
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h

P T K




   

*
2

( ) 1
1

2

aT
a T T
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e
e

a a





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 

( )

0 payoff payoff
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r T Tc E r s ds f r T E e f r T
  
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• Lets consider a caplet on the interest rate 𝑅𝑀 𝑇, 𝑇∗ , 

expressed in MM compounding, exercised at time 𝑇∗, 
with a fixed exercise rate 𝑅𝐾

• The payoff of the caplet on principal 𝐿, discounted to 𝑇 is:

• Where 𝛿 is the time factor from 𝑇 to 𝑇∗

• The caplet can thus be valued as a European put option

on the zero coupon bond 𝑃 𝑇, 𝑇∗ , multiplied by face 

value 𝐿 1 + 𝑅𝐾𝛿 , with the strike price 𝐿

• Similarly, floorlet can be valued as a European call option

Valuation of caps and floors in the 

Vasicek Model

𝐿𝛿 𝑅𝑀 − 𝑅𝐾
+

1 + 𝑅𝑀𝛿
= 𝐿 −

𝐿 1 + 𝑅𝐾𝛿

1 + 𝑅𝑀𝛿

+

= 𝐿 − 𝐿 1 + 𝑅𝐾𝛿 𝑃 𝑇, 𝑇∗
+
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• Lets assume we want to value cap on 100 million USD with 5.5 years

to maturity, semi-annual payments and strike price equal to 3% p.a., 

with the valuation done the end of 2015.

• We first fit the parameters of the Vasicek model to the interest rate

curve observed on 31.12.2015, we get:

• 𝑎 = 44.57%, 𝑏 = 3.13%, σ = 1.00% and 𝑟0 = 0.07%

• We can then value individual caplets as put options on zero coupon

bonds 𝑃 𝑇, 𝑇∗ , multiplied by face value 𝐿 1 + 𝑅𝐾𝛿 and with a strike 

price 𝐿

• The value 𝑝0 of each caplet can be computed as:

Cap valuation – Example (1)

𝑝0 = 𝐿𝑃 0, 𝑇 𝑁 −ℎ + 𝜎𝑃 − 𝐿 1 + 𝑅𝐾𝛿 𝑃 0, 𝑇∗ 𝑁 −ℎ

ℎ =
1

𝜎𝑃
ln

)𝐿 1 + 𝑅𝐾𝛿 𝑃(0, 𝑇∗

𝑃 0, 𝑇 𝐿
+
𝜎𝑃
2

𝜎𝑃 =
𝜎

𝑎
1 − 𝑒−𝑎 𝑇∗−𝑇

1 − 𝑒−2𝑎𝑇

2𝑎

𝑃 𝑡, 𝑇 = 𝐴 𝑡, 𝑇 𝑒 )−𝐵 𝑡,𝑇 𝑟(𝑡
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• The value of the cap is then given as the value of all of the caplets:

Cap valuation – Example (2)

T T* A(0,T) B(0,T) P(0,T) P(0,T*) P(T,T*) sigmaP h p

0.5 1 0.998383 0.448201 0.998063 0.993417 0.995344 0.002847 3.59208039 11.6017235

1 1.5 0.993989 0.806859 0.993417 0.986641 0.993179 0.003646 2.20817939 1745.35668

1.5 2 0.987412 1.093864 0.986641 0.978209 0.991454 0.004076 1.54897371 10615.2945

2 2.5 0.979134 1.32353 0.978209 0.968503 0.990078 0.00433 1.1378589 27135.3698

2.5 3 0.969546 1.507313 0.968503 0.95783 0.98898 0.004484 0.85126904 47934.3092

3 3.5 0.958962 1.654379 0.95783 0.946434 0.988103 0.00458 0.63978848 69692.5572

3.5 4 0.947633 1.772065 0.946434 0.934511 0.987402 0.004641 0.47866391 90229.0028

4 4.5 0.935758 1.866238 0.934511 0.922215 0.986842 0.004679 0.35356593 108400.322

4.5 5 0.923495 1.941598 0.922215 0.909668 0.986395 0.004704 0.25531928 123771.462

5 5.5 0.91097 2.001902 0.909668 0.896966 0.986037 0.004719 0.17761254 136329.271

5.5 0.898281 2.050158 0.896966

Cap 615864.547

𝑝0 = 𝐿𝑃 0, 𝑇 𝑁 −ℎ + 𝜎𝑃 − 𝐿 1 + 𝑅𝐾𝛿 𝑃 0, 𝑇∗ 𝑁 −ℎ

ℎ =
1

𝜎𝑃
ln

)𝐿 1 + 𝑅𝐾𝛿 𝑃(0, 𝑇∗

𝑃 0, 𝑇 𝐿
+
𝜎𝑃
2

𝜎𝑃 =
𝜎

𝑎
1 − 𝑒−𝑎 𝑇∗−𝑇

1 − 𝑒−2𝑎𝑇

2𝑎

𝑃 𝑡, 𝑇 = 𝐴 𝑡, 𝑇 𝑒 )−𝐵 𝑡,𝑇 𝑟(𝑡
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• European call and put options on fixed-coupon bonds can be valued

with the Vasicek model by using the Jamshidian‘s trick

• Value of bond 𝑄 at time 𝑇 is given by a series of discounted cash-

flows 𝐶1, … , 𝐶𝑛 that can be represented as a weighted sum of zero-

coupon bonds 𝑃 𝑇, 𝑇1 , … , 𝑃 𝑇, 𝑇𝑛 , each depending monotically on 

the short rate 𝑟(𝑇)

• Therefore, considering a time 𝑇 European call option on a fixed

coupon bond 𝑄 = 𝑄(𝑟 𝑇 ) with strike price 𝐾, there is a rate 𝑟∗ so 

that 𝑄 𝑟∗ = 𝐾, and the call option will be exercised only if 𝑟 𝑇 < 𝑟∗

• Payoff on the fixed coupon bond call option 𝑄 𝑟 𝑇 − 𝐾
+

can

then be represented as a weighted sum of payoffs on the zero

coupon bond call options 𝐶𝑖 𝑃(𝑇, 𝑇𝑖) − 𝐾𝑖
+ with strikes 𝐾1, … , 𝐾𝑛

being the zero coupon bond values corresponding to 𝑟∗ and 𝑇𝑖

Valuation of fixed-coupon Bonds in the 

Vasicek Model



FINACIAL DERIVATIVES II

71

Vasicek process simulation - Illustration

Source: https://www.r-bloggers.com/fun-with-the-vasicek-interest-rate-model/ 

We can see the tendency of the simulations to mean-revert towards

the long-term level (equal to 0.1 in this case)
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The Cox, Ross, Ingersoll Model

• Modeled interest rates always non-negative (might be 

negative in the Vasicek model), provided 

• r(t) cannot be expressed analytically as in Vasicek

model, but its distribution yes - non-central chi-

squared

• P(t,T) has an analytical solution – it is an affine model

• Options on bonds valued by formulas involving 

integral of the non-central chi-squared distribution

( )dr a b r d rdt z  

22ab 
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Non-Arbitrage Models 
• Allow to fit the initial term-structure of interest 

rates (no instant arbitrage) which reflects the 

expected development of the short rates

• The Ho-Lee model – analytically tractable

• Gives the classical futures convexity adjustment 

73

F(0,t) … the forward rate

( )t dt zd dr   

2( ) (0, )t F t t  

Source: John Hull, Options, Futures, and Other Derivatives, 5th edition
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Ho-Lee model – the formula for 

• The rate                               is normally 

distributed, affine model, similar option valuation 

formulas as for the Vasicek model

74
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Result:
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STIR Futures Convexity Adjustment

• The classical STIR convexity adjustment is proved in the 

context of Ho-lee model

• The futures rate is a martingale with respect to the 

traditional r.n. measure                               , but this is not 

the case of the forward rate
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( , ) ( ) ( , ) ( ) ( , )dP t T r t P t T dt T dP T zt t   by Ito’s lemma
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derive proces for P and

from it the proces for f

Drift until maturity for
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The Hull-White Model
• One Factor – generalization of the Vasicek

model -again analytically tractable

In the one-factor models the price of a bond depends just on r(t)

Two – factor Model … the reversion level given also by another process

 ( )t adr dtr dz   
2

2(0, ) (0,( ) )) (1
2

att aF tt F e
a


   

Source: John Hull, Options, Futures, and Other Derivatives, 5th edition
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Hull-White process simulation

Source: http://www.thetaris.com/wiki/Hull-White_model

Simulations of the Hull-White process can be used for the valuation of

more complex options for which no analytical formulas exist
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Other no-arbitrage models
• No-Arbitrage CIR model

• Problem: No analytical solutions for 𝜃 𝑡

• Analytical solution exists if we set volatility according to 

σ(𝑡) = 𝜃 𝑡 /δ where δ > 1/2 (Jamshidian, 1995)

• Black-Karasinski model

• Generalization of exponential-Vasicek model in which

𝑦 = ln(𝑟) follows the Vasicek model

• The B-K model adds time-dependent coefficients: 

• Problem: No analytical solutions, Money Market explodes
78

𝑑𝑟=(𝜃 𝑡 − 𝑎𝑟)𝑑𝑡 + σ 𝑟𝑑𝑧

𝑑𝑦 =(𝜃 𝑡 − 𝑎 𝑡 𝑦)𝑑𝑡 + σ(𝑡)𝑑𝑧
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Short-rate models – Summary

79

Equilibrium models 
(do not fit the zero-curve 
perfectly)

No-Arbitrage models
(do fit the zero-curve
perfectly)

Characteristics

Rendelman-Bartter Ho-Lee model

No mean reversion
Gaussian distribution
Rate may be negative
Analyticaly tractable

Vasicek model Hull-White model

Has mean reversion
Gaussian distribution
Rate may be negative
Analyticaly tractable

CIR model No-Arbitrage CIR

Has mean reversion
Non-Gaussian
Rate can not be negative*
Partically tractable

Exponential Vasicek Black-Karasinsky

Has mean reversion
Non-Gaussian
Rate can never be negative
Not tractable

*Rate may become negative due to discretization Source: Author



FINACIAL DERIVATIVES II

80

Two-factor models
• In the one-factor affine models, whole term structure depends on the

short rate 𝑟(𝑡) through the equation 𝑅 𝑡, 𝑇 = 𝛼 𝑡, 𝑇 + 𝛽 𝑡, 𝑇 𝑟(𝑡)

• Correlation between two rates 𝑅 𝑡, 𝑇1 and 𝑅 𝑡, 𝑇2 is thus always 1, 

which is unrealistic, and it becomes particularly problematic when

pricing derivatives with payoffs depending on several interest rates

• The issue can be solved with two-factor affine models:

• 𝑅 𝑡, 𝑇 = 𝛼 𝑡, 𝑇 + 𝛽1 𝑡, 𝑇 𝑥1(𝑡) + 𝛽2 𝑡, 𝑇 𝑥2(𝑡)

• 𝑥1(𝑡) and 𝑥2(𝑡) represent the sources of uncertainity, such as the

short-rate and the long-rate

• All of the short-rate models can be extended into two-factor or multi-

factor versions

• One-Factor models model the shift of the yield-curve, two-factor

models add the slope, and three-factor models the curvature

• Brigo and Mercurio (2006) show that the first two components

explain around 90% of the variations of the yield curve, while the

first three components explain 95-99% of the variation
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Two-factor Vasicek Model
• The Two-Factor Vasicek Model looks like:

• 𝑟 = 𝑥1 + 𝑥2
• 𝑑𝑥1 = 𝑘1 𝜃1 − 𝑥1 𝑑𝑡 + 𝜎1𝑑𝑧1
• 𝑑𝑥2 = 𝑘2 𝜃2 − 𝑥2 𝑑𝑡 + 𝜎2𝑑𝑧2
• With instantaneous correlation 𝑑𝑧1𝑑𝑧2 = 𝜌𝑑𝑡

• The model can be extended with deterministic shift:

• 𝑟 = 𝑥1 + 𝑥2 + 𝜑(𝑡)

• In order to exactly fit the initial zero-coupon term-

structure (making it a two-factor version of the

Hull-White Model)



FINACIAL DERIVATIVES II

Options on fixed-coupon bonds

• In the one-factor models values of zero-coupon bonds 
decline with rising short rate

• Consequently, a fix coupon bond option can be 
decomposed into a series of zero coupon bond options

• Calculate the critical short rate r* when the option on 
the bond is exercised

• Calculate strike prices of the individual zero coupon 
bond options corresponding to r*

• Sum up the values of the zero coupon bond options

• Remark: the procedure can be also used to value 
swaptions
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Volatility Structures
• The short rate models determine different 

pattern of forward rate volatilities

Source: Author
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HJM (Heath, Jarrow, and Morton)

Term-structure Models
• Allow more flexibility in choosing the volatility term 

structure, one or more factors

• Starts with a process for the discounted bond price with 

the standard risk neutral measure

• Arrives at a process for forward rates

84
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HJM Interest rate Model
• …and for instantaneous forward rates

• Consequently, if we model the forward rates by

• Then the following HJM no-arbitrage condition 

must be satisfied
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To model F(t,T) we just need to estimate s(t) (from historical data), 

then we can express the processes r(t)=F(t,t) ..depends also on F(0,t)..

and P(t,T) as well as the corresponding derivatives – fits the current 

term structure of interest rates as well as the volatility structure, but in 

general the Process is not Markov
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( , ) 0T T Note that

𝑣𝑇(𝑡, 𝑇) is the derivative of
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HJM non-Markovian behavior
• The short-rate process in the HJM framework is

non-Markovian

• i.e. as 𝑟 𝑡 = 𝐹 𝑡, 𝑡 , it holds that:

• 𝐹 𝑡, 𝑡, = 𝐹 0, 𝑡 + 0׬
𝑡
𝑑𝐹(𝜏, 𝑡)

• Replacing 𝑑𝐹(𝜏, 𝑡) with the HJM process we get:

• 𝑟 𝑡 = 𝐹 0, 𝑡 + 0׬
𝑡
𝑣(𝜏, 𝑡)𝑣𝑡(𝜏, 𝑡)𝑑𝜏 − 0׬

𝑡
𝑣𝑡(𝜏, 𝑡)𝑑𝑧(𝜏)

• The third terms depends on the path of 𝑧 from 0 to 𝑡

• In addition the second term may also become time-

dependent if 𝑣(𝜏, 𝑡) is stochastic

• The non-Markovian behavior makes binomial trees

non-recombining 86
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The Libor Market Model
• The instantaneous forward rates are not 

directly observable on the market – difficult 

calibration of the HJM model

• Libor market model is expressed in terms 

of forward “Libor” rates

87
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The Libor Market Model
• Forward rates 𝐹𝑘(𝑡) are martingales With 

respect to the P(t,tk+1) risk neutral measure

• But we need to change the numeraire to a 

“rolling CD” where the cash is always reinvested 

into „P(tk,tk+1)“. With respect to the changed 

measure
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LMM change of numeraire
• We need to make the process of 𝐹𝑘(𝑡) risk-neutral with respect to the

rolling CD account:

• We will apply the change of numeraire technique to change the

numeraire 𝑃(𝑡, 𝑡𝑘+1) to 𝑃(𝑡, 𝑡𝑚(𝑡))

• The change of drift will be 𝜌𝜎𝑤𝜎𝑓, where 𝑤 = 𝑃(𝑡, 𝑡𝑚 𝑡 )/𝑃(𝑡, 𝑡𝑘+1) is

the numeraire ratio, 𝑓 = 𝐹𝑘(𝑡), and 𝜌 is the instantaneous correlation

between 𝑤 and 𝑓

• If 𝑣𝑘(𝑡) denotes the volatility of 𝑃(𝑡, 𝑡𝑘) and:

• 𝑑𝑃 𝑡, 𝑡𝑚 = … 𝑑𝑡 + 𝑣𝑚𝑃 𝑡, 𝑡𝑚 𝑑𝑧, and by Itoo‘s lemma:

• dln[𝑃 𝑡, 𝑡𝑚 ] = … 𝑑𝑡 + 𝑣𝑚𝑑𝑧, hence

• dln 𝑃 𝑡, 𝑡𝑚 /𝑃 𝑡, 𝑡𝑘+1 = … 𝑑𝑡 + (𝑣𝑚 − 𝑣𝑘+1)𝑑𝑧

• And so the volatility of 𝑤 = 𝑃 𝑡, 𝑡𝑚 /𝑃 𝑡, 𝑡𝑘+1 is 𝑣𝑚 − 𝑣𝑘+1
• As in one-factor model 𝜌 = 1, it holds that with respect to CD account:
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The Libor Market Model
• Since

• using Ito’s lemma we obtain

• And so by induction

The model is usually simplified assuming that k are constant between ti and ti+1

The volatilities can be obtained e.g. from caplet volatilities. 

Starting from initial forward rates the futures rates can be Monte Carlo simulated

To value more complex derivatives e.g. ratchet/sticky/flexi caps, swaptions, etc.

The model can be extended to several independent factors.
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LMM Implementation
• Volatilities                 can be obtained from caplet 

quotations

• Monte Carlo simulation of Fk from tj to tj+1
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IR models comparison
• Cerny (2011) in his diploma thesis on „Stochastic Interest Rate

Modelling“ (p.84) compares different interest models for the

valuation of a complex City of Prague swap entered in 2006

• The valuation results at contract start are as follows:

• We can see that while all of the models estimated the value as 

strongly negative, standard deviation predicted by Ho-Lee and LMM 

model are much greater than for Vasicek and Hull-White
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Model Mean PV (mil CZK) Std. Dev. (mil CZK)

Vasicek -118.5 13.1

Hull-White -131.8 18.6

Ho-Lee -108.6 99.5

LMM -98.3 124.1

Source: Author
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