
European Social Fund Prague & EU: Supporting Your FutureFACULTY OF FINANCE AND ACCOUNTING

Financial Derivatives II
Part 3

Prof. RNDr. Jiří Witzany, Ph.D.
jiri.witzany@vse.cz

Ing. Milan Ficura, Ph.D.
milan.ficura@vse.cz

mailto:jiri.witzany@vse.cz
mailto:milan.ficura@vse.cz


FINACIAL DERIVATIVES II

2

Content

 Introduction – overview of B.-S. option 

pricing and hedging

 Market Risk Management

 Estimating volatilities and correlations

 Interest Rate Derivatives Pricing-

Martingale and measures

 Standard Market Model



FINACIAL DERIVATIVES II

3

Content

 Convexity, time, and quanto adjustments

 Short-rate and advanced interest rate 

models

 Volatility smile

• Exotic options

• Alternative stochastic models

• Numerical methods for option pricing

• Credit derivatives



FINACIAL DERIVATIVES II

4

Volatility Smile
• The assumption of the Black-Scholes

model that the asset price follows

Geometric Brownian Motion with constant

volatility leads to biased valuation

• When the B-S model is reversely used to 

calculate implied volatility from the

observed option prices, we can observe a 

so called volatility smile effect
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Volatility Smile
• Observed volatility smile for foreign 

currency options (EUR/CHF, EUR/USD)

It follows from the put-call parity that the smile is identical 

for calls and puts:
mkt mkt BS BS) )( (c p c p   

Source: MATLAB
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Example: calculate the implied volatilies…

Source: Globex
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Implied (Empirical) versus 

Lognormal Distribution

Reasons: volatile volatility, existence of jumps
Source: John Hull, Options, Futures, and Other Derivatives, 5th edition
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Implied probability distribution
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Differentiate twice w.r.t. K

…and express the density function using the 2nd order derivative
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Equity Options – Volatility 

Skew

Source: John Hull, Options, Futures, and Other Derivatives, 5th edition
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Equity Options - Implied Volatility

Possible explanation: jumps down more probable than up,

negative correlation between volatility and returns,

decline of equity implies higher leverage of the company 

and higher price volatility

Source: John Hull, Options, Futures, and Other Derivatives, 5th edition
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CBOE Skew index

• Skewness index derived by CBOE from the prices of

S&P500 out-of-the-money options

• We can see that the skewness of S&P500 returns is

increasing since 2008
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CBOE VVIX index

VVIX index measures the implied volatility of VIX options (i.e. 

volatility of volatility, which is related to S&P500 kurtosis)
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Volatility Term Structure
• Volatility is quoted as a function of maturity

• Caused by the time-varying volatility
Source: Author
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Volatility Surface
• Together with the smile there is a volatility 

surface

• The volatility smile complicates the 

calculation of Greeks – volatility is 

sensitive to the spot price

Source: John Hull, Options, Futures, and Other Derivatives, 5th edition
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Volatility Surface

EURUSD 

Source: Author
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Volatility Surface Example

Source: Thomson Reuters
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Single Large Jump

Volatility Frown

Volatility Frown (i.e. concave volatility smile) is

also commonly observed in the case of mean-

reverting assets such as interest rates or VIX
Source: John Hull, Options, Futures, and Other Derivatives, 5th edition, Author
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Model Free Volatility
• Valid for a wide range of price processes

• Expected integrated variance, i.e.

• According to Neuberger and Britten-Jones 

(2000) can be derived from the continuum 

of option prices 

• The result holds also in presence of jumps 

(Jiang and Tian, 2005) 

• Since 2003 it is used for VIX calculation
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Volatility and variance swaps
• Volatility swap – payoff depends on the

difference between strike volatility and realized

volatility until the maturity of the swap

• Variance swap – payoff depends on the

difference between strike and realized variance

• Represent instruments used to directly enter 

long/short positions in volatility (alternative to 

straddles, strangles, VIX futures, etc.)

• While for volatility swap there is no closed-form

valuation formula, the ekvilibrium rate of a variance 

seap is known and is equal to the model-free variance:
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Variance risk premium
• It turns out that implied volatility (and model-free 

and variance swap rates) tend to systematically

overestimate the future realized volatility

• The effect is known as variance risk premium

• Explanations:

– Volatility has strongly negative correlations with market 

returns (negative beta), investors with short position in 

volatility (i.e. short option positions) demand positive risk 

premium in order to be in these positions

– Volatility exhibits asymmetry (skweness) upwards (i.e. 

potential of increase is larger than of a decrease), leading

to a skewness risk premium (for short positions)

– Jumps in volatility tend to typically occurr upwards
20
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Variance risk premium - VIX

Source: Author
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Variance risk premium - VXX

Volatility risk-premium is contained also in VIX futures – The chart shows

the profit of VXX ETF which constantly shorts VIX futures
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Exotic Options

• Classification (Wilmott):

• Path dependence (weak, strong – new

variable must be introduced into valuation, 

discrete, continuous)

• Dimensionality (multi factor, strong path 

dependence)

• Order

• Embedded decisions

• Cash flows (discrete, continuous)

• Time dependence
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Exotic Options
• Nonstandard American Options, e.g. Bermudan 

Options – exercise restricted to certain dates –
time dependence and embedded decision 
example (valuation using binomial trees)

• Compound options – options on options 
(European compound options can be valued 
analytically)

• Chooser Options – at certain time the holder 
specifies whether it is a put or call (European 
style can be valued analytically using the put-call 
parity)
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Binary options

• Payoff 0 or a fixed amount Q (or the asset)

• European style can be valued analytically using 

the risk-neutral valuation principle where 

P[ST>K]=N(d2)

• Normal European call = +1 asset-or-nothing call 

-1 strike price-or-nothing call
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Barrier Options
• Payoff depends also on reaching certain 

barrier during a time period

• Knock-out (put/call)… no pay-off if the barrier 
is reached

• Knock-in (put/call) … pay-off only if the barrier 
is reached

• Down/up-and-in, down/up-and-out (put/call)

• Can be valued analytically (European type) in 
the context of geometric Brownian motion 

• An adjustment necessary if the barrier 
crossing is observed only in discrete times

• Hedging difficult due to discontinuities
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Barrier Options - Types

• As for each type of option we can be in long vs. short

position, there are altogether 16 possible positions

• Barrier options can also differ based on whether the breach

of barrier is observed at any time until maturity or only at

maturity (less common)

Source: Author
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Reflection principle

• The key idea to value barrier options 

assuming the geometric Brownian motion

 

70

80

90

100

110

120

130

140

0 0.2 0.4 0.6 0.8 1 1.2

S
p

o
t 
p

ri
ce

t

B

K

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2

t

z

z_refl

b

2b-w

w

Source: Author



FINACIAL DERIVATIVES II

Valuation Formula – up and out

European call (BS model)
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Asian Options
• Payoff depends on the average price

• Asian price vs. Asian strike options:

– Asian price call payoff = max(Save-K,0)

– Asian price put payoff = max(K-Save,0)

– Asian strike call payoff = max(ST -Save,0)

– Asian strike put payoff = max(Save-ST,0)

• Useful to hedge an average cost (e.g. exchange rate, 

comodity prices) during some time period

• Exact analytic formula not available if the average is 

arithmetic (exists if geometric)

• If the average is geometric, binomial trees can be used

for valuation, otherwise – Monte-Carlo simulations

𝑆𝑎𝑣𝑒 𝑡, 𝑇 =
1

𝑇
න

𝑡

𝑇

𝑆 𝑠 𝑑𝑠

ሚ𝑆𝑎𝑣𝑒 𝑡, 𝑇 = 
1

𝑚
σ𝑗=1
𝑚 𝑆(𝑡𝑗)
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Asian Options – Monte Carlo
• Asian options with arithmetic means usually need to be valued

with Monte Carlo simulations

• To value a fixed-strike Asian call, we can:

1. Simulate 𝑖 = 1,… , 𝑁 evolutions of the stock price for the period

𝑡 = 1,… , 𝑇, using the equation:

starting with the initial stock price 𝑆0, 𝑇 is the maturity, and 

𝜀𝑡
(𝑖)
~𝑁(0,1) are simulated values from standard normal distribution

2. For each simulation 𝑖 compute the 𝑆𝑎𝑣𝑒,1:𝑇
𝑖

and payoff 𝑐𝑇
𝑖

:

3. The estimated value of the option is then equal to:

𝑆𝑡
𝑖
= 𝑆𝑡−1

𝑖
exp r −

𝜎2

2
+ 𝜎𝜀𝑡

𝑖

𝑆𝑎𝑣𝑒,1:𝑇
𝑖

=
1

𝑇


𝑡=1

𝑇

𝑆𝑡
𝑖 𝑐𝑇

𝑖
= max 𝑆𝑎𝑣𝑒,1:𝑇

𝑖
− 𝐾, 0

𝑐0 = 𝑒−𝑟𝑇
1

𝑁


𝑖=1

𝑁

𝑐𝑇
𝑖
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Lookback Options
• Payoff depends on the maximum or minimum reached 

during the option life:
– Floating-Strike Lookback call payoff = max(ST-Smin,0)

– Floating-Strike Lookback put payoff = max(Smax-ST,0)

– Fixed-Strike Lookback call payoff = max(Smax-K,0)

– Fixed-Strike Lookback put payoff = max(K-Smin,0)

• European type lookbacks can be valued analytically

• The pricing formula involves the modelling of the final
stock price as well as the maximum stock price until
maturity (derivation of the formula is similar as for
barrier options)
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Shout Options

• Shout options – shout … 1st realization any 
time during the life, maturity the 2nd, payoff = 
the maximum (valuation using binomial 
trees) max( , ,0)TS K S K 
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Options Involving Two or More Assets

• Value depends on multiple assets:
– One-Asset-For-Another option

– Basket options – Payoff depends on the average value of a basket of

assets

– Rainbow options – Payoff depends on the performance of the best or

the worst asset in a basket

– Mountain range options – Complicated payoff, usually depends on 

the performance of k best or worst performing assets in a basket:

• Himalayan option – Payoff based on average of k best assets

• Everest option – Payoff based on average of k worst assets

• Atlas option – k best and k worst assets are removed from basket

• Annapurna option – Basket option with a Knock-Out if k assets in 

the basket fall below a certain barrier

• Correlation plays a crucial role in valuation

• Valuation usually with Monte-Carlo simulations
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Option to Exchange one asset for

another

• One asset for another option payoff = 

max(VT-UT,0)

• Valuation based on the change of 

numeraire technique
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Monte-Carlo valuation of 2-asset options

• Correlated Geometric Brownian Motions for 2 assets:

• 𝑑𝑆1,𝑡 = 𝜇1𝑆1,𝑡𝑑𝑡 + 𝜎1𝑆1,𝑡𝑑𝑊1,𝑡

• 𝑑𝑆2,𝑡 = 𝜇2𝑆2,𝑡𝑑𝑡 + 𝜎2𝑆2,𝑡𝑑𝑊2,𝑡

• Where it holds that E(𝑑𝑊1,𝑡𝑑𝑊2,𝑡) = 𝜌𝑑𝑡

• In order to simulate 𝑑𝑊1,𝑡 and 𝑑𝑊2,𝑡, we use:

• 𝑑𝑊1,𝑡~𝑁(0, 𝑑𝑡)

• 𝑑𝑊2,𝑡~𝜌𝑑𝑊1,𝑡 + 1 − 𝜌2𝑑𝑍𝑡

• Where 𝑍𝑡 is a Wiener process uncorrelated with 𝑊1,𝑡, so:

• 𝑑𝑍𝑡~𝑁(0, 𝑑𝑡)

• We set 𝜇1 = 𝜇2 = 𝑟, simulate the asset paths, value the

option at 𝑇, and discount with the risk-free rate 𝑟
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Example - Simulation of correlated returns

We use parameters:

𝜇1 = 𝜇2 = 𝑟 = 2% ∗ (1/252),

𝜎1 = 𝜎2 = 30% ∗ (1/ 252)

𝑆1,0 = 𝑆2,0 = 100

And for each period 𝑡 do:

𝑆1,𝑡 = 𝑆1,𝑡−1exp 𝜇1 −
1

2
𝜎1
2 + 𝜎1𝑊1,𝑡

𝑊1,𝑡~𝑁(0,1)

𝑊2,𝑡~𝜌𝑊1,𝑡 + 1 − 𝜌2𝑍𝑡

𝑑𝑍𝑡~𝑁(0,1)

𝑆1,𝑡 = 𝑆2,𝑡−1exp 𝜇2 −
1

2
𝜎2
2 + 𝜎2𝑊2,𝑡

Source: Author
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Monte-Carlo valuation of N-asset options
• Each asset 𝑖 = 1,… , 𝑁 follows a process:

• 𝑑𝑆𝑖,𝑡 = 𝜇𝑖𝑆𝑖,𝑡𝑑𝑡 + 𝜎𝑖𝑆𝑖,𝑡𝑑𝑊𝑖,𝑡

• Which, according to Itoo‘s Lemma gives:

• 𝑆𝑖,𝑇 = 𝑆𝑖,0exp 𝜇𝑖 −
1

2
𝜎𝑖
2 𝑇 + 𝜎𝑖𝑊𝑖,𝑇

• For correlated assets it holds that 𝐸 𝑊𝑖,𝑇𝑊𝑗,𝑡 = Ω𝑖,𝑗𝑇

• Where Ω𝑖,𝑗 is the correlation between 𝑖 and 𝑗

• How do we generate samples from 𝑊𝑖=1,…,𝑁,𝑇?

• Suppose 𝑋 is a vector of independent 𝑁(0,1) variables, and 𝑌 = 𝐿𝑋

• Covariance (correlation) matrix of X is given as:

• 𝐸 𝑌𝑌𝑇 = 𝐸 𝐿𝑋𝑋𝑇𝐿𝑇 = 𝐿𝐸 𝑋𝑋𝑇 𝐿𝑇 = 𝐿𝐿𝑇 , Since 𝐸 𝑋𝑋𝑇 = 𝐼

• To get 𝐸 𝑌𝑌𝑇 = Ω, we need to use Cholesky decomposition to find 𝐿

• 𝐿𝐿𝑇 = Ω

• Values from the correlated vector 𝑊𝑖=1,…,𝑁,𝑇 can then be simulated by drawing

𝑁 independent 𝑁(0,1) variables and transforming them with 𝑌 = 𝐿𝑋

• The correlation matrix Ω is typically estimated from historical data
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Warrants
• Call options issued by firms, which give the holder the right to 

purchase shares of the firm at a fixed price.

• Main difference between warrant and call option is that the firm
issues new shares if the warrant is exercised

• Exercise of the warrant will thus dilute the firms equity

• The effective payoff of the warrant at maturity 𝑇 is:

• Where 𝐸𝑇 is the value of the firms equity, 𝑀 is the number of
issued warrants, 𝑋 is the exercise price of warrants, and 𝑁 is the
number of shares outsdtanding prior to the exercise of warrants

• The payoff will thus depend on the overal amount of warrants
outstanding 𝑀

𝑝𝑎𝑦𝑜𝑓𝑓 = max
𝐸𝑇 +𝑀 ∗ 𝑋

𝑁 +𝑀
− 𝑋, 0
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Warrants - Rearrangement
• In order to derive the valuation formula for warrants, it is usefull

the rearrange the payoff function:

𝑝𝑎𝑦𝑜𝑓𝑓 = max
𝐸𝑇 +𝑀𝑋

𝑁 +𝑀
− 𝑋, 0

𝑝𝑎𝑦𝑜𝑓𝑓 =
𝑁

𝑁 +𝑀
max

𝐸𝑇
𝑁

− 𝑋, 0

𝑝𝑎𝑦𝑜𝑓𝑓 = max
𝐸𝑇 +𝑀𝑋

𝑁 +𝑀
−
𝑁 +𝑀

𝑁 +𝑀
𝑋, 0

𝑝𝑎𝑦𝑜𝑓𝑓 = max
𝐸𝑇 +𝑀𝑋 − 𝑁𝑋 −𝑀𝑋

𝑁 +𝑀
, 0

𝑝𝑎𝑦𝑜𝑓𝑓 = max
𝐸𝑇 − 𝑁𝑋

𝑁 +𝑀
, 0
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Warrants - Valuation
• The warrant payoff formula can be rearranged into:

• A problem is that 𝐸𝑇 must include the value of the warrants

• The value of equity 𝐸0 at time 0 is:

• Where 𝑆0 is the stock price and 𝑊0 the price of the warrant

• i.e. to value the warrent 𝑊0, the underlying in the option pricing

model has to be 𝑆0 +
𝐸𝑇
𝑁
𝑊0, which includes the unknown 𝑊0

• The option valuation formula 𝐶𝑎𝑙𝑙(𝑆, 𝐾, 𝑇, σ, 𝑅𝑓), thus has to be

applied recursivelly, starting with an initial estimate 𝑊0
(0)

• We then run the following recusion until the result converges:

𝑁

𝑁 +𝑀
max

𝐸𝑇
𝑁

− 𝑋, 0

𝐸0 = 𝑁 ∗ 𝑆0 +𝑀 ∗𝑊0

𝑊0
(𝑖)

=
𝑁

𝑁 +𝑀
𝐶𝑎𝑙𝑙 𝑆0 +

𝐸𝑇
𝑁
𝑊0

(𝑖−1)
, 𝑋, 𝑇, σ, 𝑅𝑓
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Alternative Stochastic Models

• Empirical observations differ from the lognormal 

returns assumption – volatility surface 

• Need of alternative models in particular for exotic 

(e.g. barrier) options

Diffusion models – prices change continuously

Mixed jump-diffusion models

Pure jump models

Stochastic Volatility models (without/with jumps)

Variance-Gamma model
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Constant Elatisticity of Variance 

Model

•  = 1 GBM,  < 1 heavy left tail,  > 1 heavy 

right tail 

• Analytic formulas exist for European call and put

• Applicable to options on equity or futures (skew), 

not FX (smile)

• For exotic options parameters are fit to prices of 

plain vanilla options minimizing the sum of 

squared differences

( )dS r q S Sdt dz  
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Implied Volatility Function (IVF) 

Models

• The local volatility function (S,t) is chosen to 
price all (plain vanilla) European options 
consistently with the market

• It is also called “the implied tree” as the 
volatilities can be estimated step by step on 
nodes of a binomial tree

• Joint distributions of prices at different times can 
be modeled incorrectly – problem for compound, 
barrier, and some other exotic options

 ( ) ( ,) )(dS r t q t S S S zd dt t  
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Mixed Jump Diffussion Model

• Probability of a jump in time dt is dt

• The jump process is usually decomposed  

as where dN is the Poisson 
counting process and at -1 the jump size

• Average jump size as a percentage of S is

• The Wiener process dz and the jump process dJ
are independent

• If at is lognormally distributed then there is a 
formula (Merton) – an infinite series involving B-S 
prices, not very nice

• Heavier left and right tails - appropriate for FX 
options

)( J SdtdS r q m Sdz dJ    

 1tdJ a SdN 

Jm
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Merton’s Formula

• Where fn is the option value conditional on n

jumps with the adjusted volatility and the risk 

free rate:

• Since the drift is not r the lambda needs to be 

adjusted (due to change of measure) to

• jump distribution:

0

)(

!

T n

n

n

Te
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Stochastic Volatility Models

• The stochastic variable V models the variance

• There is a mean reversion of V to a long-term mean

• If the Wiener processes dzS and dzV are uncorrelated and 
V follows the GBM process then there is a semianalytic
formula for European options (Hull, White)

• If  = 0.5 then there is a semianalytic formula (Heston)

• Otherwise a Monte Carlo simulation must be used

• Parameters typically fitted to historical returns and/or to 
prices of plain vanilla options and then used to price exotic 
options (e.g. FX)
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(  or) ,

log ( log )

L V

V V

V

dS
r q dt V dz

S

dV a V

d

dt V dz

V dt dzV



  

 

 

  





e.g.



FINACIAL DERIVATIVES II

Hull-White Lemma

• Suppose                         with dz and dV

independent and 

• Then                                    is 

lognormally distributed conditional

upon     

VVdt ddV V z 

0

1
T

V Vdt
T

 

0/ ) ( / 2,n( )l T S N rT VT TS V

V
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Hull White Formula
• Option value can be expressed as a 

probability density weighted mean of the

option values conditional on   

• Assuming that     has a known distribution 

we integrate the BS formula over the 

distribution

• Hull, White (1987) use the Taylor 

expansion of BS and known moments of

if V follows the GBM

V

V

V

V
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Heston model
• Stochastic volatility model with semi-analytical

solution for the option price

• Variance follows the CIR process

• 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝑉𝑡𝑆𝑡𝑑𝑊𝑆,𝑡

• 𝑑𝑉𝑡 = κ 𝜃 − 𝑉𝑡 𝑑𝑡 + 𝜉 𝑉𝑡𝑑𝑊𝑉,𝑡

• 𝑊𝑆,𝑡 and 𝑊𝑉,𝑡 are correlated Wiener processes with

correlation 𝜌

• Similarly to the Black-Scholes PDE, we can derive

the Heston PDE (uses Vanna and Vomma):

•
𝑑𝑓

𝑑𝑡
+

1

2
𝑉𝑆2

𝜕2𝑓

𝜕𝑆2
+ 𝜌𝜎𝑉𝑆

𝜕2𝑓

𝜕𝑉𝜕𝑆
+

1

2
𝜉2𝑉

𝜕2𝑓

𝜕𝑉2
+ 𝑟 − 𝑞 𝑆

𝜕𝑓

𝜕𝑆
+

κ 𝜃 − 𝑉 𝑆
𝜕𝑓

𝜕𝑉
= 𝑟𝑓
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Heston calibration - Example

• With the current EUR/USD spot = 1.1308

• And the IRstructure in USD and EUR being:

• The goal is to calibrate the Heston model

to this data so that it can be used for the

valuation of more complex (exotic) options

• The EUR/USD spot price and the volatility term structure for

EUR/USD call options was downloaded from Investing.com:

1W 1M 3M 6M 12M

Strike Vol Strike Vol Strike Vol Strike Vol Strike Vol

1.126 5.88% 1.12 5.57% 1.11 6.11% 1.09 6.95% 1.09 7.49%

1.127 5.85% 1.1225 5.52% 1.115 6.02% 1.1 6.78% 1.1 7.34%

1.128 5.83% 1.125 5.47% 1.12 5.94% 1.11 6.62% 1.11 7.21%

1.129 5.81% 1.1275 5.43% 1.125 5.86% 1.12 6.47% 1.12 7.08%

1.13 5.80% 1.13 5.40% 1.13 5.80% 1.13 6.35% 1.13 6.97%

1.131 5.79% 1.1325 5.38% 1.135 5.74% 1.14 6.25% 1.14 6.85%

1.132 5.80% 1.135 5.37% 1.14 5.70% 1.15 6.18% 1.15 6.76%

1.133 5.81% 1.1375 5.37% 1.145 5.68% 1.16 6.14% 1.16 6.69%

1.134 5.83% 1.14 5.38% 1.15 5.68% 1.17 6.14% 1.17 6.64%

1.135 5.85% 1.1425 5.39% 1.155 5.69% 1.18 6.18% 1.18 6.61%

Maturity r_EUR r_USD

1W -0.38% 2.42%

1M -0.37% 2.48%

3M -0.31% 2.61%

6M -0.23% 2.68%

12M -0.11% 2.86%

53Source: Investing.com, Author
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Heston calibration - Example
• The calibration would proceed as follows:

1. Compute option prices from the implied volatilities using B-S formula

2. Set the parameters of the Heston model to some initial values, for

example κ = 0.1, 𝜃 = 0.1, 𝜉 = 0.1, 𝜌 = 0.1 and 𝑉0 = 0.1 𝑝. 𝑎.

3. Use Heston model to compute prices of all options in the term structure

4. Transform the Heston option prices into B-S implied volatilities

5. Use appropriate optimization algorithm in order to set the values of the

parameters κ, 𝜃, 𝜉, 𝜌 and 𝑉0 to minimize the sum of squared differences

between the market implied volatilities and the implied volatilities from

the Heston model based option prices

• The calibration can be done in Matlab, using the functions:

o blsprice – To compute the Black-Scholes prices

o optByHestonNI – To calculate Heston option prices

o blsimpv – To calculate the Black-Scholes implied volatilities

o fmincon – To perform the optimization

54
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SABR volatility model
• Stochastic alpha, beta, rho (3 parameters) model:

• 𝑑𝐹𝑡 = 𝜎𝑡𝐹𝑡
𝛽
𝑑𝑊𝑡

• 𝑑𝜎𝑡 = 𝛼𝜎𝑡𝑑𝑍𝑡
• 𝑑𝑊𝑡𝑑𝑍𝑡 = 𝜌𝑑𝑡

• Where 𝐹𝑡 is the forward stock price and 𝑑𝑊𝑡 and 𝑑𝑍𝑡
are correlated Wiener processes with correlation 𝜌

• Represents stochastic version of the CEV model with

skew given by 𝛽 and volatility of the volatility by 𝛼

• Can be calibrated to fit the volatility smile

• The model has a simple analytical solution that can

be expressed in terms of the implied volatility of the

Black model (causing it to match the SABR price)
55
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Realized Volatility

• Assume a general SV model

• Since

• We can define integrated variance as

• Empirically approximated by the 

realized volatility

dt dzdr   
2 2 2 22dr dt dtdtdz   

2 2
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Realized volatility and jumps

• In presence of jumps the quadratic 

variance               can be decomposed

• Jumps can be filtered out by the 

realized bi-power variation 

• And so the jumps can be identified 

inspecting the difference

2

, ( ) 11

( )( ) ( )
t s t dN s

QV V st I t 
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Z-Estimator of jumps
• The difference 𝑅𝑉 𝑡, ∆ − 𝐵𝑉 𝑡, ∆ is plagued by large estimation

noise due to the discreetness of ∆

• This can be quantified by using the integrated quarticity 𝑇𝑄 =

𝑡−1
𝑡

𝜎𝑠
4𝑑𝑠, consistently estimated (in the presence of jumps) with

the realized tri-power quarticity:

• Statistically significant jumps can then be estimated with the Z-

Estimator, which asymptotically follows the standard normal

distribution in the days of no jumps:

TQ t, ∆ =
π Τ3 2

4∆
Γ

7

6

−3



j=3

Τ1 ∆

r t − 1 + j∆, ∆ Τ4 3 r t − 1 + (j − 1)∆, ∆ Τ4 3 r t − 1 + (j − 2)∆, ∆ Τ4 3,

𝑍 t, ∆ =
𝑅𝑉 𝑡, ∆ − 𝐵V t, ∆ 𝑅𝑉 𝑡, ∆ −1

Τ𝜋 2 2 + 𝜋 − 5 max 1, 𝑇𝑄 t, ∆ 𝐵V t, ∆ −2 ∆

JV t, ∆ = 𝐼 𝑍 t, ∆ > Φ α −1 RV t, ∆ − BV t, ∆
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Model Free Volatility

• Expected integrated variance, i.e.

• According to Neuberger and Britten-

Jones (2000) can be derived from the 

continuum of option prices 

• The result holds also in presence of 

jumps (Jiang and Tian, 2005) 

2
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Stochastic-Volatility Jump-Diffusion

• SVJD model class – the most general models

• Stochastic volatility – Increases the tails of the return 

distribution in longer horizons

• Jumps – Increase the tails of the return distribution in 

shorter horizons

• Example – Log-Variance model with Poisson jumps

• Log-Price process:

• Log-Variance process:

• Where:

• The model can further assume correlation between 𝑑𝑧
and 𝑑𝑧𝑉, time-variability of λ, or jumps in ℎ 𝑡

• Parameter estimation with MCMC
60

𝑑𝑝 𝑡 = 𝜇𝑑𝑡 + 𝜎 𝑡 𝑑𝑧 𝑡 + 𝑗 𝑡 𝑑𝑞 𝑡

𝑑ℎ 𝑡 = 𝜅 𝜃 − ℎ 𝑡 𝑑𝑡 + ξ𝑑𝑧𝑉 𝑡

ℎ 𝑡 = ln 𝜎2 𝑡 ൯𝑗 𝑡 ~𝑁(𝜇𝐽, 𝜎𝐽 Pr dq t = 1 = λdt
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Model estimation vs. calibration
• There are two ways of how to estimate parameters of

stochastic processes used for option pricing:

1. Calibration to quoted options – The parameters of the model 

are set so that it correctly prices all quotes (typically plain-vanilla) 

options on the market (i.e. captures the volatility surface). The

benefit of the method is that it corresponds to the risk-neutral

setting, it is forward looking and can be quick if an analytical

formula for the option prices is available. The calibrated model 

can then be used to price exotic options.

2. Estimation on historical data – The parameters of the model 

are fitted in order to explain in the best possible way (i.e. 

maximum likelihood) the historical asset price returns. The main

drawback of the method is that the parameters may not 

correspond to the risk-neutral setting that we use in option

pricing. The main benefit is that the model can be assumed to 

accurately reflect the dynamics of the price process and it can

thus be used for computing the expected payoff from the option

as well as Value at Risk and Expected shortfall. 61
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MCMC estimation of SVJD models
• Estimation on past historical data is problematic as in 

addition to the model parameters, we need to estimate

the vectors of latent state variables (V, Q, J)

• Markov-Chain Monte-Carlo (MCMC) method:

• Assume we want to estimate the joint posterior density

𝑝(Θ|data), of all of the model parameters and latent

states given by Θ = (𝜃1, … , 𝜃𝑘)

• MCMC contsructs a Markov Chain, using only the

information about the contitional densities

𝑝(𝜃𝑗|𝜃𝑖 , 𝑖 ≠ 𝑗, data), that converges to the target density

Θ = (𝜃1, … , 𝜃𝑘)

• Types of MCMC algorithms: Gibbs Sampler, Metropolis

Hastings, Accept-Reject Gibbs, etc.
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Gibbs Sampler

• The Gibbs sampler proceeds as follows:

1. Assign a vector of initial values to Θ0 = (𝜃1
0, … , 𝜃𝑘

0)
and set 𝑗 = 0

2. Set 𝑗 = 𝑗 + 1

3. Sample 𝜃1
𝑗
~𝑝(𝜃1|𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data)

4. Sample 𝜃2
𝑗
~𝑝 𝜃2 𝜃1

𝑗
, 𝜃3

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data

5. …

6. Sample 𝜃𝑘
𝑗
~𝑝(𝜃𝑘|𝜃1

𝑗
, 𝜃2

𝑗
, … , 𝜃𝑘−1

𝑗
, data) and return to step 1.

• The conditional densities are typically derived from:

63

𝑝 𝜃1 𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

, data ∝ 𝐿 data 𝜃1, 𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

∗ prior 𝜃1 𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1
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Metropolis-Hastings algorithm
• To utilize the Metropolis-Hastings algorithm, Step 2 

in the Gibbs Sampler algorithm has to be replaced 

by the following two step procedure:

A. Sample 𝜃1
𝑗

from a proposal density 

𝑞(𝜃1|𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

, data)

B. Accept 𝜃1
𝑗

with probability 𝛼 = min(𝑅, 1), with 𝑅

denoting the so called acceptance ratio:

64

𝑅 =
൯𝑝(𝜃1

𝑗
|𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data)𝑞(𝜃1

𝑗−1
|𝜃1

𝑗
, 𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data

൯𝑝(𝜃1
𝑗−1

|𝜃2
𝑗−1

, … , 𝜃𝑘
𝑗−1

, data)𝑞(𝜃1
𝑗
|𝜃1

𝑗−1
, 𝜃2

𝑗−1
, … , 𝜃𝑘

𝑗−1
, data
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Analysis of Jumps and Stochastic 

Volatility for EUR/CZK a PX

• Data 2/9/2004 – 11/2/2011

65
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Estimation of jump-diffusion 

model parameters
• Discrete model

• MCMC estimated (simulated) variables and 

parameters:

• In the case of a jump-diffusion model state 

variables (jump times and sizes) do not have 

to be necessarily estimated, but there is a 

model consistent identification of jumps as a 

side product
66
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Empirical Results

µ σ  µJ σJ

2.3842e-004 

(9.0573e-005 

)

0.0030 

(1.0443e-004)

0.1849 

(0.0260)

-8.5108e-005 

(5.9265e-004 

)

0.0093 

(6.6180e-004)
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CZK/EUR (daily returns)

µ σ  µJ σJ

0.0010 

(2.8714e-004)

0.0101 

(3.6742e-004)

0.1530

(0.0227 ) 

-0.0041 

(0.0025)

0.0355 

(0.0026) 

PX (daily returns)

Source: Author

Source: Author
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Jump Times and Sizes
• Average jump size is shown only for times, 

where P[J=1]>0,5

• It is obvious that there is a jumps clustering

68
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Extension of the model with 

correlations
• MCMC process can be implemented 

simultaneously for both time series estimation 

correlations between , Z a J

• Diffusion and jump size correlations are 

negligible but there is a significant correlation 

between jump occurrence

69

ρD ρZ ρJ
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Source: Author
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Jump-diffusion model with stochastic 

volatility

• It seems that volatility clustering corresponds to 

crisis periods with large volatility, and so the model 

should be extended with stochastic volatility

• MCMC process must be extended with a variance 

vector       whose estimation is non-trivial 

(Metropolis)
70
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Test of the Model

µ  µJ σJ   
0.01 0.03 0.03 0.11 -0.14 0.98 0.15
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Returns (T=2000) generated with the parameters:

MCMC estimations

µ  µJ σJ   
0.0091 

(5.6548e-

004)

0.0391 

(0.0108)

0.0370 

(0.0181)

0.1092 

(0.0126)

-0.1821 

(0.0884)

0.9731 

(0.0131)

0.1346 

(0.0367)

Source: Author

Source: Author
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Univariate stochastic volatility models 

estimates

72
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Empirical Results

µ  µJ σJ   
1.8506e-

004(6.374

6e-005)

0.0284(0.

0083)

-2.2616e-

004(0.002

4)

0.0117(0.

0018)

-0.1205 

(0.0545)

0.9893 

(0.0048)

0.1313 

(0.0193)
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CZK/EUR (daily returns)

PX (daily returns)

µ  µJ σJ   
0.0012 

(1.9213e-

004)

0.0237 

(0.0068)

0.0011(0.

0079)

0.0427 

(0.0066)

-0.1957 

(0.0613)

0.9781 

(0.0069)

0.2119 

(0.0247)

Source: Author

Source: Author
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Particle filters
• Assume we have an observed time series 𝑦𝑡 and observable

series 𝑥𝑡, where:

• The goal of the filtering problen is to estimate 𝑝 𝑥𝑡|𝑦1:𝑡 , 𝜃

• The SIR Particle Filter (Gordon, 1993) proceeds as follows:

1. We represent the density 𝑝 𝑥𝑡−1|𝑦1:𝑡−1, 𝜃 with a weighted set of i =

1,… ,𝑀 particles 𝑥𝑡−1
(𝑖)

with weights 𝑤𝑡−1
(𝑖)

2. We simulate new particles for time 𝑡 from a proposal density

𝑔 𝑥𝑡|𝑥𝑡−1, 𝑦𝑡

3. We compute the weights for time 𝑡 with: 𝑤𝑡
(𝑖)

=
𝑝 𝑦𝑡|𝑥𝑡

𝑖 𝑝 𝑥𝑡
𝑖|𝑥𝑡−1

𝑖

𝑔 𝑥𝑡
𝑖|𝑥𝑡−1

𝑖 ,𝑦𝑡
𝑤𝑡−1
(𝑖)

4. We normalize the weights: 𝑤𝑡
(𝑖)

= ൗ𝑤𝑡
(𝑖) σ𝑗=1

𝑀 𝑤𝑡
(𝑖)

5. If 𝐸𝑆𝑆 = ൗ1 σ𝑖=1
𝑀 𝑤𝑡

(𝑖) 2
< 𝐸𝑆𝑆𝑇ℎ𝑟 we re-sample the particles with

probability of being sampled equal to 𝑤𝑡
(𝑖)

, and we set all of the weights

to 𝑤𝑡
(𝑖)

= 1/𝑀

𝑦𝑡~𝑝 𝑦𝑡|𝑥𝑡, 𝜃

𝑥𝑡 ~𝑝 𝑥𝑡|𝑥𝑡−1, 𝜃
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Variance-Gamma Model

• The idea is that the future price development 
depends on the information flow rather than on 
time itself

• To model ST we firstly generate “the information 
time” g using the Gamma distribution and then ST

as a lognormal variable with variance 2g and with 
an appropriate mean

• Additional parameters: v… the variance rate of the 
gamma process, …skewness

• Tends to produce U-shaped volatility smiles
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Gamma Distribution

Source: http://smartdrill.com/images/Gamma%20distributions.jpg
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Variance Gamma Process

Source: Author

Distributions obtained with variance-gamma proces and geometrie 

Brownian motion.
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Option Valuation with Fast Fourier 

Transform
• Carr and Madan (1999) proved that for exponential Lévy 

processes it is possible to express the value of a plain-
vanilla call option by using the Fast Fourier Transform and 
the characteristic function of the process as follows:

• Where φln 𝑆𝑇

𝑄
denotes the characteristic function of the

logarithm of he risk-neutral process, describing the
dynamics of the underlying asset at time 𝑇

• Use of the formula greatly simplifies the calibration of
many of the models mentioned in previous sections
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Content

 Convexity, time, and quanto adjustments

 Short-rate and advanced interest rate 

models

 Volatility smiles

 Exotic options

 Alternative stochastic models

 Numerical methods for option pricing

• Credit derivatives
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Numerical Methods

• Binomial trees – useful in particular for 

valuation of American options working backward 

through the tree

• Control variate technique estimates an American 

option as fA+(fBS-fE)

• Trinomial trees can be used as an alternative, 

in particular for barrier options and interest rate 

derivatives

S0

S0d

S0u

S0

Source: Author
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Monte Carlo Simulations
• Appropriate for path-dependent options (e.g. 

Asian)

• Generally time consuming, if  is the 
standard deviation of the variable being 
estimated and M the number of steps then 
the standard error is

• There are, however, various variance 
reduction techniques (antithetic variable, 
control variate, importance sampling, 
stratified sampling, moment matching, quasi-
random sequences, ..) leading to an 
improvement up to the order of

M



M
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Other Numerical Techniques
• Finite difference methods to solve partial 

differential equations

• Binomial Trees for path dependent 

derivatives

• Binomial Trees in two or more dimension with 

a correlation

• Monte Carlo simulations for American options

• See Chapters 20 and 26 in Hull, 8th Edition
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Content

 Convexity, time, and quanto adjustments

 Short-rate and advanced interest rate 

models

 Volatility smiles

 Exotic options

 Alternative stochastic models

 Numerical methods for option pricing

 Credit derivatives
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Requirement Title Author Year of Publication 

Required Credit Risk Management and 

Modeling 

Witzany, J. 2010, Oeconomica, 

pp. 215 

Optional Managing Credit Risk – The 

Great Challenge for Global 

Financial Markets 

Caouette J.B., Altman 

E.I., Narayan O., 

Nimmo R.  

2008, 2nd Edition, 

Wiley Finance, pp. 

627 

Optional Credit Risk – Pricing, 

Measurement, and 

Management 

Duffie D., Singleton 

K.J.  

2003, Princeton 

University Press, 

pp.396 

Optional Consumer Credit Models: 

Pricing, Profit, and Portfolios 

Thomas L. C.  2009, Oxford 

University Press, pp. 

400 

Optional Credit Derivatives Pricing 

Models  

Schönbucher P.J.  2003, Wiley Finance 

Series, pp. 375 
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Source: Author
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Credit Derivatives
• Payoff depends on creditworthiness of 

one or more subjects

• Single name or multi-name 

• Credit Default Swaps, Total Return 

Swaps, Asset Backed Securities, 

Collateralized Debt Obligations

• Banks – typical buyers of credit 

protection, insurance companies –

sellers 
86
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Credit Default Swaps
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Credit Default Swaps

• CDS spread usually paid in arrears quarterly 

until default

• Notional, maturity, definition of default

• Reference entity (single name)

• Physical settlement – protection buyer has 

the right to sell bonds (CTD)

• Cash settlement – calculation agent, or binary

• Can be used to hedge corresponding bonds

88Source: Author
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Valuation of CDS

• Requires risk neutral probabilities of 

default for all relevant maturities

• Market value of a CDS position is then 

based on the general formula

• Market equilibrium CDS spread is the 

spread that makes MV=0

89

1
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Risk neutral default 

probabilities
• Can be calculated from bond prices using the 

general formula and bootstrapping

• Example: Given bond prices for maturities 

1,2,3 calculate the probabilities (LGD=0.4)

90

Bond Value Coupon Maturity R Q

101,00     3,50    1 2,00% 1,11%

102,50     5,00    2 3,00% 3,20%

102,00     5,00    3 3,50% 5,45%

0.02 0.02

1·103.5·0.6 ·(1 )·103.5·0.4101 Qe e  

0.02 0.03 0.02 0.03

2·5·0.6 ·105·0.6 ·(1 0.0111)·5·0.4102. ·(1 )·15 05·0.4e e e e Q       

Source: Author
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Default intensities

• In order to interpolate/extrapolate the 

cumulative PDs it is useful to work with 

default intensities, i.e. hazard rates

• Example:

91

( ) 1
( ) ,  i.e. ( ) ( )

1 ( )

( )dS t

dt

dQ t
t t S t

Q t dt
  



0
( )

( )( ) 1 1

t

s ds
t tQ t e e

 
   

0

1
( ) ( )

t

t s ds
t

  

Maturity Q Aver   Annual 

1 1,11% 1,12% 1,12%

2 3,20% 1,62% 2,13%

3 5,45% 1,87% 2,36%

(2.5) ( (2) (3)) / 2 1.75%     (2.5) 4.27%Q 

1 2 30.5
(2.5) 1 4.33%Q e

    
  or

Source: Author
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Historical versus risk-neutral 

probabilities

92

Rating Historical 

default intensity 

Risk Neutral 

Default intensity  

Ratio Difference 

Aaa 0.04 0.60 16.7 0.56 

Aa 0.05 0.74 14.6 0.68 

A 0.11 1.16 10.5 1.04 

Baa 0.43 2.13 5.0 1.71 

Ba 2.16 4.67 2.2 2.54 

Caa and lower 13.07 18.16 1.4 5.5 

 Source: Author
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Valuation of single name CDS
• 3Y CDS, we pay 120 bps on $100, calculate 

the market value given the probabilities 

obtained above, LGD=0.4, and assuming that 

defaults can happen only halfway through a 

year

• Market spread of appr. 76 bps makes MV=0
93

Time Q R Cash Flow Probability Expected PV

0,5 2,00% 39,40      1,11% 0,43            

1 1,11% 2,00% 1,20 -        98,89% 1,16 -           

1,5 2,50% 39,40      2,09% 0,79            

2 3,20% 3,00% 1,20 -        96,80% 1,09 -           

2,5 2,17% 39,40      2,26% 0,84            

3 5,45% 3,50% 1,20 -        94,55% 1,02 -           

Total 1,21 -           

Source: Author
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Estimating Default Probabilities
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Rating systems

Bond prices

Historical PDs

Risk neutral PDs

CDS Spreads

Source: Author
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Example of CDS quotes

95

Source: Standard & Poor`s, 2010
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Total Return Swap

• Total return payer gives up the return 

including the credit risk spread and receives 

essentially the risk free return (plus the 

counterparty credit risk margin)

• Total return swap should not be mistaken with 

the Asset Swap where a risky fix coupon 

bond investment cash flow is transformed to 

risky floating coupon par investment cash 

flow 96

Source: Author



FINACIAL DERIVATIVES II

Credit Indices
• In principle averages of single name CDS 

spreads for a list of companies

• In practice traded multi-name CDS

• CDX NA IG – 125 investment grade 

companies in N.America

• iTraxx Europe  - 125 investment grade 

European companies

• Standardized payment dates, maturities 

(3,5,7,10), and even coupons – market value 

initial settlement

97
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Credit Indices - Evolution

98

Source: http://1.bp.blogspot.com/_9cc9B-U-py0/S-UyECW5JKI/AAAAAAAABL4/f_yFN9rkE18/s1600/Markit.gif
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CDS Forwards and Options

Basket CDS
• Defined similarly to forwards and options on 

other assets or contracts, e.g. IRS

• Valuation of forwards can be done just with 

the term structure of risk neutral probabilities

• But valuation of options requires a stochastic 

modeling of probabilities of default (or 

intensities – hazard rates)

• Many different types of basket CDS: add-up, 

first-to-default, k-th to default … requires 

credit correlation modeling
99
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Asset Backed Securities (CDO,..)

100

• Allow to create AAA bonds from a 

portfolio of poor assets

Source: Author
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CDO market
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Year

 High Yield 

Bonds 

 High Yield 

Loans 

 Investment 

Grade Bonds 

 Mixed 

Collateral  Other 

 Other 

Swaps 

 Structured 

Finance  Total 

2000 11 321        22 715    29 892      2 090  932        1 038       67 988        

2001 13 434        27 368    31 959      2 194  2 705    794          78 454        

2002 2 401          30 388    21 453      1 915  9 418    17 499    83 074        

2003 10 091        22 584    11 770      22        6 947    110     35 106    86 630        

2004 8 019          32 192    11 606      1 095  14 873  6 775  83 262    157 821      

2005 1 413          69 441    3 878        893     15 811  2 257  157 572  251 265      

2006 941             171 906  24 865      20        14 447  762     307 705  520 645      

2007 2 151          138 827  78 571      1 722    1 147  259 184  481 601      

2008 27 489    15 955      18 442    61 887        

2009 2 033       1 972        331          4 336          

2010 1 807       4 806        321        1 731       8 666          

2011 20 002    1 028        8 126    1 975       31 131        

2012 44 062    62             20 246    64 371        

2013 -               26 362    -             -       -         -       63 911    90 273        

2014 -               70 018    430           -       -         -       70 846    141 294      Source: Author
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Cash versus Synthetic CDOs

• Synthetic are created using CDS

102Source: Author
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Single Tranche Trading

• Synthetic CDO tranches based on CDX 

or iTraxx

103Source: John Hull, Option, Futures, and Other Derivatives, 7th Edition



FINACIAL DERIVATIVES II

Valuation of CDOs

• Sources of uncertainty: times of default 

of individual obligor and the recovery 

rates (assumed deterministic in a 

simplified approach)

• Everything else depends on the 

Waterfall rules (but in practice often 

very complex to implement precisely)

104
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Valuation of CDOs

• Monte Carlo simulation approach:

• In one run simulate the times to default of 

individual obligors in the portfolio using risk 

neutral probabilities and appropriate 

correlation structure

• Generate the overall cash flow (interest and 

principal payments) and the cash flows to 

individual tranches

• Calculate for each tranche the mean 

(expected value) of the discounted cash flows 

105
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Valuation of CDO and distribution

of losses
• Thresholds

• Loss and

• Tranche i value

• Assumming partial linearity of the loss cdf F 

the up-front spread
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Gaussian Copula of Time to Default

• In order to model portfolio loss distribution we

need a correlation model

• Guassian Copula is the approach when 

correlation is modeled on the standard 

normal transformation of the time to default

• The single factor approach can be used to 

obtain an analytical valuation

• Generally used also in simulations
107
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Implied Correlation

• Correlations implied by market quotes 

based on the standard one factor model 

(similarly to implied volatility)

108

John Hull, Option, Futures, and Other Derivatives, 7th Edition
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Alternative Models

• The correlations are uncertain!

• The Gaussian correlations may go up if there 

is a turmoil on the market!

• Alternative copulas: Student t copula, Clayton 

copula, Archimedean copula, Marshall-Olkin

copula

• Random factor loading

• Dynamic models – stochastic modeling of 

portfolio loss over time – structural (assets), 

reduced form (hazard rates), top down 

models (total loss)
109
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Intensity of default stochastic

modeling
• Necessary to model option-like credit 

derivatives and more complex products

• Structural stochastic models: stochastic asset 

value drives the event of default – unrealistic 

low PD for short maturities – can be solved 

introducing jumps or uncertain initial values

110Source: Author
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Reduced-form models

• Default intensity (hazard rate) treated as a 

stochastic variable

• Advantage: easier to calibrate, PDs and 

spreads observable

• Disadvantage: arrival of default not captured –

introduction of doubly stochastic process where 

the arrival of default is a Poisson process 

conditional on the default intensity process, e.g.

• Reduced form pricing:
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