Introduction to Insurers risk management

1BP461

EVROPSKÁ UNIE
Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

References: DOFF, Rene. Risk Management for Insurers. 2. London: Incisive Media Investments, 2011. ISBN 9781906348618.

Insurance balance sheet

Risk categories

VaR as a multiple of standard deviation

Probability distribution of value

Economic capital rating ambition

Probability distribution of financial results

Components of life underwriting risk

Economic capital for life risk

Probability distribution of mortality rate

Worst-case
mortality
rate

Best-estimate
mortality rate

Components of non-life underwriting risk

Economic capital for reserve risk

Worst-case (99,95 \%) run-off pattern

	2002	$€$	100	€	50	€	30	€	10	€	5
区ِ	2003	$€$	103	$€$	51	$€$	31	€	10	$€$	5
ス	2004	$€$	106	$€$	53	$€$	32	$€$	11	$€$	5
\bigcirc	2005	$€$	73	$€$	37	$€$	22	$€$	7	$€$	4
-	2006	$€$	149	€	74	€	45	€	15	$€$	7
4	2007	$€$	154	$€$	77	$€$	46	$€$	15	$€$	8

Best-estimate (expected) run-off pattern

Worst-case fair value
-/-

Best-estimate fair value

$$
=
$$

Economic capital

Total investment portfolio of European insurers

Components of market risk

Components of credit risk

Modular standardised approach to the SCR

Calculation methods for each of the SCR modules in QIS3

```
Risk type
Market risk
    Equity risk
    Propety risk
```


Component

Interest rate risk
32% decrease for global stock markets and 45% for other markets
20\% decrease in property markets
Currency risk 20% change in foreign exchange rates
Credit spread risk Market value of the bond times duration times a factor, depending on rating of the bond
Concentration An additional charge for investments with exposures above specified tresholds
Aggregation
Credit risk

Non-life risk
reserve risk
CAT risk
Aggregation
Health risk
Claim risk
Epidemic risk
Aggregation
Correlation matrix and taking into account reductions for profit sharing
Replacement costs of a certain credit exposure times a function based on PD per exposure (consistnet with Basel II)

Premium and Premiums or reserves times function of standard deviation
Sum of losses of series of specified CAT scenarios
Correlation matrix
Expense risk Factor times standard deviation of expenses (10 year historical data) times gross premium Factor times standard deviation of health results (10 year historical data) times gross premium
Factor times gross premium times market share
Correlation matrix and taking into account reductions for profit sharing

Life risk Mortality risk 10% increase in mortality rates in each age class
Longevity risk 25% decrease in mortality rates in each age class
Disability
Lapse risk
Expense risk
Revision risk
Calamity risk
Aggregation
35% increase in disability rates fot next year, combined with 25% permanent increase
50% increase in lapse rates on permanent annual increase of 3% of lapse rates
10% increase in expenses and 1% increase in permanent expense inflation rate
3% increase in annuity benefits for relevant products
A factor for increased mortality rates andfor increased lapse rates in case of a CAT event
Correlation matrix and taking into account reductions for profit sharing

Operational

Factor times earnings or technical provisions, depending on business line

Three kinds of diversification

Management control cycle and economic capital

Introduction to ALM

References: HULL, John. Risk management and financial institutions. 5. London: John Wiley \& Sons, 2008. ISBN 0-13-613427-0

Today

- An introduction to the asset/liability management (ALM) process
- What is the goal of ALM?
- The concepts of duration and convexity
- Extremely important for insurance enterprises
- Extensions to duration
- Partial duration or key rate duration

Asset/Liability Management

- As its name suggests, ALM involves the process of analyzing the interaction of assets and liabilities
- In its broadest meaning, ALM refers to the process of maximizing risk-adjusted return
- Risk refers to the variance (or standard deviation) of earnings
- More risk in the surplus position (assets minus liabilities) requires extra capital for protection of policyholders

The ALM Process

- Firms forecast earnings and surplus based on "best estimate" or "most probable" assumptions with respect to:
- Sales or market share
- The future level of interest rates or the business activity
- Lapse rates
- Loss development
- ALM tests the sensitivity of results for changes in these variables

The Goal of ALM

- If assets can be purchased to replicate the liabilities in every potential future state of nature, there would be no risk
- The goal of ALM is to analyze how assets and liabilities move to changes in interest rates and other variables
- We will need tools to quantify the risk in the assets AND liabilities

Price/Yield Relationship

- Recall that bond prices move inversely with interest rates
- As interest rates increase, present value of fixed cash flows decrease
- For option-free bonds, this curve is not linear but convex

Price/yield curve

Simplifications

- Fixed income, non-callable bonds
- Flat yield curve
- Parallel shifts in the yield curve

Examining Interest Rate Sensitivity

- Start with two $\$ 1000$ face value zero coupon bonds
- One 5 year bond and one 10 year bond
- Assume current interest rates are 8\%

Price Changes on Two Zero Coupon Bonds Initial Interest Rate = 8\%

Principal	\mathbf{R}	5 year	Change	10 year	Change
1000	0.06	747.2582	9.7967%	558.3948	20.5532%
1000	0.07	712.9862	4.7611%	508.3493	9.7488%
1000	0.0799	680.8984	0.0463%	463.6226	0.0926%
1000	0.08	680.5832	0.0000%	463.1935	0.0000%
1000	0.0801	680.2682	-0.0463%	462.7648	-0.0925%
1000	0.09	649.9314	-4.5038%	422.4108	-8.8047%
1000	0.1	620.9213	-8.7663%	385.5433	-16.7641%

Price Volatility Characteristics of Option-Free Bonds

Properties
1 All prices move in opposite direction of change in yield, but the change differs by bond
$2+3$ The percentage price change is not the same for increases and decreases in yields
4 Percentage price increases are greater than decreases for a given change in basis points
Characteristics
1 For a given term to maturity and initial yield, the lower the coupon rate the greater the price volatility
2 For a given coupon rate and intitial yield, the longer the term to maturity, the greater the price volatility

Macaulay Duration

- Developed in 1938 to measure price sensitivity of bonds to interest rate changes
- Macaulay used the weighted average term-to-maturity as a measure of interest sensitivity
- As we will see, this is related to interest rate sensitivity

Macaulay Duration (p.2)

$$
\begin{gathered}
\text { Macaulay Duration }=\sum_{t=1}^{n} \frac{t \times P V C F_{t}}{k \times P V T C F_{t}} \\
t=\text { index for period } \\
n=\text { total number of period }
\end{gathered}
$$

$k=$ number of coupon payments per year
$P V C F_{t}=$ Present value of cash flow in period t $P V T C F_{t}=$ Total present value of cash flows (price)

Applying Macaulay Duration

- For a zero coupon bond, the Macaulay duration is equal to maturity
- For coupon bonds, the duration is less than its maturity
- For two bonds with the same maturity, the bond with the lower coupon has higher duration

Percentage change in price $=$
$-\frac{1}{1+\frac{y i e l d}{k}} \times$ Macaulay duration \times Yield change $\times 100$

Modified Duration

- Another measure of price sensitivity is determined by the slope of the price/yield curve
- When we divide the slope by the current price, we get a duration measure called modified duration
- The formula for the predicted price change of a bond using Macaulay duration is based on the first derivative of price with respect to yield (or interest rate)

Modified Duration and Macaulay Duration

$$
\begin{aligned}
& \qquad P=\sum \frac{C F_{t}}{(1+i)^{t}} \\
& \text { Modified duration }=-\frac{\partial P}{\partial \mathrm{i}} \times \frac{1}{P}=\sum \frac{t \times C F_{t}}{(1+i)^{t+1}} \times \frac{1}{P} \\
& =\frac{1}{(1+i)} \times \text { Macaulay duration } \\
& \begin{array}{l}
i=\text { yield } \\
\mathrm{P}=\text { price }
\end{array} \\
& \quad \mathrm{CF}=\text { Cash flow }
\end{aligned}
$$

An Example

Calculate:
What is the modified duration of a 3-year, 3% bond if interest rates are 5\%?

Solution to Example

Period
Cash Flow

1	3
2	3
3	103

Total

PV
2.86
$t \times P V$
2.86 5.44
2.72
88.98
266.93
94.55
275.23

Macaulay duration $=\frac{275.23}{94.55}=2.91$
Modified duration $=\frac{2.91}{1.05}=2.77$

Example Continued

- What is the predicted price change of the 3 year, 3% coupon bond if interest rates increase to 6\%?

Example Continued

- What is the predicted price change of the 3 year, 3% coupon bond if interest rates increase to 6\%?
\% Price Change $=-$ Modified Duration \times Yield Change

$$
=-2.77 \times .01=-2.77 \%
$$

Other Interest Rate Sensitivity Measures

- Instead of expressing duration in percentage terms, dollar duration gives the absolute dollar change in bond value
- Multiply the modified duration by the yield change and the initial price
- Present Value of a Basis Point (PVBP) is the dollar duration of a bond for a one basis point movement in the interest rate
- This is also known as the dollar value of an 01 (DV01)

A Different Methodology

- The "Valuation..." book does not use the formulae shown here
- Instead, duration can be computed numerically
- Calculate the price change given an increase in interest rates of i
- Numerically calculate the derivative using actual bond prices:

$$
\text { Duration }=-\frac{\Delta \mathrm{P}}{\Delta \mathrm{i}} / \mathrm{P}
$$

Introduction to VaR

References: HULL, John. Risk management and financial institutions. 5. London: John Wiley \& Sons, 2008. ISBN 0-13-613427-0

The Question Being Asked in VaR

"What loss level is such that we are $X \%$ confident it will not be exceeded in N business days?"

VaR and Regulatory Capital

- Regulators base the capital they require banks to keep on VaR
- The market-risk capital is k times the 10-day 99% VaR where k is at least 3.0

VaR vs. C-VaR

- VaR is the loss level that will not be exceeded with a specified probability
- C-VaR (or expected shortfall) is the expected loss given that the loss is greater than the VaR level
- Although C-VaR is theoretically more appealing, it is not widely used

Advantages of VaR

- It captures an important aspect of risk in a single number
- It is easy to understand
- It asks the simple question: "How bad can things get?"

Time Horizon

- Instead of calculating the 10-day, 99\% VaR directly analysts usually calculate a 1-day 99\% VaR and assume

$$
10 \text {-day } \operatorname{VaR}=\sqrt{10} \times 1 \text {-day } \mathrm{VaR}
$$

- This is exactly true when portfolio changes on successive days come from independent identically distributed normal distributions

Historical Simulation

- Create a database of the daily movements in all market variables.
- The first simulation trial assumes that the percentage changes in all market variables are as on the first day
- The second simulation trial assumes that the percentage changes in all market variables are as on the second day
- and so on

Historical Simulation continued

- Suppose we use m days of historical data
- Let v_{i} be the value of a variable on day i
- There are $m-1$ simulation trials
- The i th trial assumes that the value of the market variable tomorrow (i.e., on day $m+1$) is

$$
v_{m} \frac{v_{i}}{v_{i-1}}
$$

The Model-Building Approach

- The main alternative to historical simulation is to make assumptions about the probability distributions of return on the market variables and calculate the probability distribution of the change in the value of the portfolio analytically
- This is known as the model building approach or the variance-covariance approach

Daily Volatilities

- In option pricing we measure volatility "per year"
- In VaR calculations we measure volatility "per day"

$$
\sigma_{\text {day }}=\frac{\sigma_{\text {year }}}{\sqrt{252}}
$$

Daily Volatility continued

- Strictly speaking we should define $\sigma_{\text {day }}$ as the standard deviation of the continuously compounded return in one day
- In practice we assume that it is the standard deviation of the percentage change in one day

Microsoft Example

- We have a position worth $\$ 10$ million in Microsoft shares
- The volatility of Microsoft is 2% per day (about 32% per year)
- We use $N=10$ and $X=99$

Microsoft Example continued

- The standard deviation of the change in the portfolio in 1 day is $\mathbf{\$ 2 0 0 , 0 0 0}$
- The standard deviation of the change in 10 days is

$$
200,000 \sqrt{10}=\$ 632,456
$$

Microsoft Example continued

- We assume that the expected change in the value of the portfolio is zero (This is OK for short time periods)
- We assume that the change in the value of the portfolio is normally distributed
- Since $N(-2.33)=0.01$, the VaR is

$$
2.33 \times 632,456=\$ 1,473,621
$$

AT\&T Example

- Consider a position of $\$ 5$ million in AT\&T
- The daily volatility of AT\&T is 1% (approx 16% per year)
- The S.D per 10 days is
- The VaR is

$$
50,000 \sqrt{10}=\$ 158,144
$$

$$
158,114 \times 2.33=\$ 368,405
$$

Portfolio

- Now consider a portfolio consisting of both Microsoft and AT\&T
- Suppose that the correlation between the returns is 0.3

S.D. of Portfolio

- A standard result in statistics states that
- In this case $\sigma_{X}=200,000$ and $\sigma_{Y}=50,000$ and $\rho=0.3$. The standard deviation of the change in the portfolio value in one day is therefore 220,227

$$
\sigma_{X+Y}=\sqrt{\sigma_{X}^{2}+\sigma_{Y}^{2}+2 \rho \sigma_{X} \sigma_{Y}}
$$

VaR for Portfolio

- The 10 -day 99% VaR for the portfolio is
- The benefits of diversification are

$$
(1,473,621+368,405)-1,622,657=\$ 219,369
$$

- What is the incremental effect of the AT\&T holding on VaR?

$$
220,227 \times \sqrt{10} \times 2.33=\$ 1,622,657
$$

The Linear Model

We assume

- The daily change in the value of a portfolio is linearly related to the daily returns from market variables
- The returns from the market variables are normally distributed

The General Linear Model continued

$$
\begin{aligned}
& \Delta P=\sum_{i=1}^{n} \alpha_{i} \Delta x_{i} \\
& \sigma_{P}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \sigma_{i} \sigma_{j} \rho_{i j} \\
& \sigma_{P}^{2}=\sum_{i=1}^{n} \alpha_{i}^{2} \sigma_{i}^{2}+2 \sum_{i<j} \alpha_{i} \alpha_{j} \sigma_{i} \sigma_{j} \rho_{i j}
\end{aligned}
$$

where σ_{i} is the volatility of variable i and σ_{P} is the portfolio's standard deviation

Handling Interest Rates: Cash Flow Mapping

- We choose as market variables bond prices with standard maturities (1mth, 3mth, 6mth, 1yr, 2yr, 5yr, 7yr, 10yr, 30yr)
- Suppose that the $5 y r$ rate is 6% and the $7 y r$ rate is 7% and we will receive a cash flow of $\$ 10,000$ in 6.5 years.
- The volatilities per day of the $5 y r$ and $7 y r$ bonds are 0.50% and 0.58% respectively

Example continued

- We interpolate between the $5 y r$ rate of 6% and the 7 yr rate of 7% to get a 6.5 yr rate of 6.75%
- The PV of the $\$ 10,000$ cash flow is

$$
\frac{10,000}{1.0675^{6.5}}=6,540
$$

Example continued

- We interpolate between the 0.5% volatility for the $5 y r$ bond price and the 0.58% volatility for the 7 yr bond price to get 0.56% as the volatility for the 6.5 yr bond
- We allocate α of the PV to the 5yr bond and (1- α) of the PV to the 7 yr bond

Example continued

- Suppose that the correlation between movement in the 5yr and 7 yr bond prices is 0.6
- To match variances
- This gives $\alpha=0.074$

$$
0.56^{2}=0.5^{2} \alpha^{2}+0.58^{2}(1-\alpha)^{2}+2 \times 0.6 \times 0.5 \times 0.58 \times \alpha(1-\alpha)
$$

Example continued

The value of 6,540 received in 6.5 years
in 5 years and by

$$
6,540 \times 0.074=\$ 484
$$

in 7 years. $6,540 \times 0.926=\$ 6,056$

This cash flow mapping preserves value and variance

When Linear Model Can be Used

- Portfolio of stocks
- Portfolio of bonds
- Forward contract on foreign currency
- Interest-rate swap

The Linear Model and Options

Consider a portfolio of options dependent on a single stock price, S. Define

$$
\text { and } \quad \delta=\frac{\Delta P}{\Delta S}
$$

$$
\Delta x=\frac{\Delta S}{S}
$$

Linear Model and Options continued

- As an approximation
- Similarly when there are many underlying market variables

$$
\Delta P=\delta \Delta S=S \delta \Delta x
$$

where δ_{i} is the delta of the portfolio with respect to the i th asset

$$
\Delta P=\sum_{i} S_{i} \delta_{i} \Delta x_{i}
$$

Example

- Consider an investment in options on Microsoft and AT\&T. Suppose the stock prices are 120 and 30 respectively and the deltas of the portfolio with respect to the two stock prices are 1,000 and 20,000 respectively
- As an approximation

$$
\Delta P=120 \times 1,000 \Delta x_{1}+30 \times 20,000 \Delta x_{2}
$$

where Δx_{1} and Δx_{2} are the percentage changes in the two stock prices

Skewness

The linear model fails to capture skewness in the probability distribution of the portfolio value.

Quadratic Model

For a portfolio dependent on a single stock price it is approximately true that this becomes

$$
\begin{aligned}
& \Delta P=\delta \Delta S+\frac{1}{2} \gamma(\Delta S)^{2} \\
& \Delta P=S \delta \Delta x+\frac{1}{2} S^{2} \gamma(\Delta x)^{2}
\end{aligned}
$$

Quadratic Model continued

With many market variables we get an expression of the form

$$
\Delta P=\sum_{i=1}^{n} S_{i} \delta_{i} \Delta x_{i}+\sum_{i=1}^{n} \frac{1}{2} S_{i} S_{j} \gamma_{i j} \Delta x_{i} \Delta x_{j}
$$

where

$$
\delta_{i}=\frac{\partial P}{\partial S_{i}} \quad \gamma_{i j}=\frac{\partial^{2} P}{\partial S_{i} S_{j}}
$$

This is not as easy to work with as the linear model

Monte Carlo Simulation

To calculate VaR using M.C. simulation we

- Value portfolio today
- Sample once from the multivariate distributions of the Δx_{i}
- Use the Δx_{i} to determine market variables at end of one day
- Revalue the portfolio at the end of day

Monte Carlo Simulation

- Calculate ΔP
- Repeat many times to build up a probability distribution for ΔP
- VaR is the appropriate fractile of the distribution times square root of N
- For example, with 1,000 trial the 1 percentile is the 10 th worst case.

Speeding Up Monte Carlo

Use the quadratic approximation to calculate ΔP

Comparison of Approaches

- Model building approach assumes normal distributions for market variables. It tends to give poor results for low delta portfolios
- Historical simulation lets historical data determine distributions, but is computationally slower

Stress Testing

- This involves testing how well a portfolio performs under some of the most extreme market moves seen in the last 10 to 20 years

Back-Testing

- Tests how well VaR estimates would have performed in the past
- We could ask the question: How often was the actual 10-day loss greater than the 99\%/10 day VaR?

Principal Components Analysis for Interest Rates

- The first factor is a roughly parallel shift (83.1\% of variation explained)
- The second factor is a twist (10% of variation explained)
- The third factor is a bowing (2.8% of variation explained)

Using PCA to calculate VaR

Example: Sensitivity of portfolio to rates (\$m)

1 yr	2 yr	3 yr	4 yr	5 yr
+10	+4	-8	-7	+2

Sensitivity to first factor :
$10 \times 0.32+4 \times 0.35-8 \times 0.36-7 \times 0.36+2 \times 0.36=-0.08$

Similarly sensitivity to second factor $=-4.40$

Using PCA to calculate VaR continued

- As an approximation
- The f_{1} and f_{2} are independent
- The standard deviation of ΔP is

$$
\begin{aligned}
& \Delta P=-0.08 f_{1}-4.40 f_{2} \\
& \sqrt{0.08^{2} \times 17.49^{2}+4.40^{2} \times 6.05^{2}}=26.66
\end{aligned}
$$

- The 1 day 99% VaR is $26.66 \times 2.33=62.12$

Introduction to liquidity risk

References: Banks, E. (2014). Sources of Liquidity. In: Liquidity Risk. ISBN: 978-1-137-37440-0, [on-line],Global Financial Markets Series. Palgrave Macmillan, London. https://doi.org/10.1057/9781137374400_3

Common sources of asset liquidity

Common sources of funding liquidity

Common sources of off-balance sheet liquidity

- Off-balance sheet

Securitization

An acceptable source of liquidity, primarily through transfer of securities or receivables to conduit in exchange for cash

Contingent financing

A good source of liquidity, releasing cash to be used to meet other obligations

Leases

A good source of liquidity, releasing cash to be used to meet other obligations

Derivates

A limited source of liqudity, primarily through offmarket, synthetic, or leveraged structures that provide upfront cash or relieve funding requirements

Asset

Liabilities

Liquid assets

Cash and marketable securities

A ready source of liquidity, either through outright sale or pledge of unencumbered securities for cash

Receivables

- A ready source of liquidity, either through outright sale (factoring) or pledge of unencumbered receivables for cash

- Inventories

- An accaptable source of liquidity, either through outright sale or pledge of unencumbered inventories; most effective for standard, durable inventories

Fixed assets and intangibles

Fixed assets

A possible source of liquidity, primarilly through pledge of unencumbered plant and equipment for cash

Intangibles

Not a source of liquidity

Short term funding
 CP , Euro CP
 short-term bank facilities
 payables
 deposits, repurchase agreements
 putable funding agreements

Ready sources of liquidity, but ones that are more complex to manage can be withdrawn or cancelled very rapidly

Medium-/long-term funding

Medium-term notes/Euronotes
non-putable funding agreements
bonds
Loans
Ready sources of liquidity that provide a greater degree of funding stability; secured facilities remove some balance sheet flexibility

Equity

Equity capital
N/A

Table: Corporate liquidity ratios

- Gross Working Capital = Current Assets + Current Liabilities
- Net Working Capital = Current Assets - Current Liabilities
- Current Assets = Cash + Markatable Securities + Receivables + Inventories
- Current Liabilities $=$ Short-Term Debt Obligations + Current Portion OF Long-Term Debt + Payables
- Working Capital Ratio = Net Working Capital/Total Assets
- Current Ratio = Current Assets/Current Liabilities
- Quick Ratio $=($ Current Assets + Markatable Securities $) /$ Current Liabilities
- \quad Cash Ratio $=($ Cash + Markatable Securities $) / C u r r e n t$ Liabilities
- Liquidity coverage Ratio = (Current Assets - Inventories)/Avarage Daily Operating Expenses
- Current Liability Ratio 1 = Current Liabilities/Equity
- Current Liability Ratio 2 = Current Liabilities/Total Assets
- Current Liability Ratio 3 = Current Liabilities/Total Debt
- Avarage Payables Maturity (days) $=\left(365^{*}\right.$ Avarage Payables)/Purchases
- Payables Turnover = Purchases/ Avarage Annual Payables
- Avarage Receivables Maturity (days) $=\left(365^{*}\right.$ Avarage Receivables)/Sales
- Receivables Turnover = Sales/ Avarage Annual Receivables
- Capital Expanditure Coverage = Operating Cash Flow/ Capital Expanditure

Fixed/liquid asset limits

- Total liquid assets
- Minimum of $x \%$ or $x \$$ of total assets
- Cash and marketable securities
- Minimum of $x \%$ or $x \$$ of total assets
- Receivables
- Minimum of $x \%$ or $x \$$ of total assets
- Inventories
- Maximum of $\mathrm{x} \%$ or $\mathrm{x} \$$ of total assets
- Total fixed assets
- Maximum of $x \%$ or $x \$$ of total assets

Collateral/pledging limits

Asset

Liabilities

Total liquid assets

Maximum of $\mathrm{x} \%$ or $\mathrm{x} \$$ of total liquid assets pledged as collateral

Cash and marketable securities

Maximum of $\mathrm{x} \%$ or $\mathrm{x} \$$ of total cash/ securities pledged as collateral

Receivables

Maximum of $\mathrm{x} \%$ or $\mathrm{x} \$$ of total receivables pledged as collateral

Inventories
Maximum of $\mathrm{x} \%$ or $\mathrm{x} \$$ of total inventories pledged as collateral

Total fixed assets

Maximum of $\mathrm{x} \%$ or $\mathrm{x} \$$ of total assets pledged as collateral

Diversified funding limits

Commited facility limits

- Total bank funding sources

Equity

Off-balance sheet

 funding commitments

EVROPSKÁ UNIE

Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Toto dílo podléhá licenci Creative Commons
Uved'te původ - Zachovejte licenci 4.0 Mezinárodní.

