Applied Quantitative Methods II
 Lecture 9: Limited dependent variables

Klára Kališková

Motivation

- Many topics when dependent variable is a dummy variable
- For any discrete choice, dependent variable is typically a dummy variable:
- Will a person get a loan?
- Will a customer buy a product?
- Will a person study college?
- Will a woman work if she has $2+$ kids?
- Will there be re-offense in cases of domestic violence if the offender is arrested on the spot?

Outline

- Today: models with outcome variable

$$
Y_{i}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

depending on qualitative choice (binary models)

- These will be:
- Linear Probability Model (LPM)
- Logit Model
- Probit Model

Outline

(1) Introduction

(2) Probit and logit

(3) Tobit

(4) Heckman's model
(5) Example: Taxes and female labor force participation

Probability distribution of Y_{i}

- Y_{i} is a discrete random variable with Bernoulli distribution:

$$
Y_{i}= \begin{cases}1 & \text { with probability } p_{i} \\ 0 & \text { with probability } 1-p_{i}\end{cases}
$$

- We can find the expected value:

$$
E\left[Y_{i}\right]=1 \cdot p_{i}+0 \cdot\left(1-p_{i}\right)=p_{i}
$$

- and the variance:

$$
\begin{aligned}
\operatorname{Var}\left[Y_{i}\right] & =E\left[Y_{i}^{2}\right]-\left(E\left[Y_{i}\right]\right)^{2}=1^{2} \cdot p_{i}+0^{2} \cdot\left(1-p_{i}\right)-p_{i}^{2} \\
& =p_{i}-p_{i}^{2}=p_{i}\left(1-p_{i}\right)
\end{aligned}
$$

Linear Probability Model

- Running the usual OLS on dummy dependent variable:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+\varepsilon_{i}
$$

- Why we call it the "linear probability" model?
- Let us take the expectated value:

$$
\begin{aligned}
E\left[Y_{i}\right] & =\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+E\left[\varepsilon_{i}\right] \\
p_{i} & =\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}
\end{aligned}
$$

- Hence, $p_{i}=\operatorname{Prob}\left(Y_{i}=1\right)$ is a linear function of explanatory variables

Example

- Angrist, J. (2006) Instrumental Variables Methods in Experimental Criminological Research: What, Why, and How?
- Estimate determinants of re-offense status y for cases of domestic violence (y is dummy indicating cases when re-offense occurred)
- Main explanatory variable:

$$
d_{-} \text {coddled }= \begin{cases}1 & \text { if the offender was not arrested } \\ 0 & \text { if the offender was arrested }\end{cases}
$$

- Other controls:
- race dummies
- dummies indicating the presence of weapons and drugs

Example

- OLS (robust SE)

Linear regression

$$
\begin{array}{ll}
\text { Number of obs } & =330 \\
\text { F } 5, \text { 324) } & =1.54 \\
\text { Prob }>\text { F } & =0.1763 \\
\text { R-squared } & =0.0239 \\
\text { Root MSE } & =.38457
\end{array}
$$

	Coef.	Robust Std. Err.	t	$\mathrm{P}>\mid \mathrm{tl}$	[95\% Conf. Interval]	
d_coddled	.0873254	.0410044	2.13	0.034	.0066569	.1679938
drugs	.0479707	.0437274	1.10	0.273	-.0380548	.1339962
weapon	.0113562	.0480876	0.24	0.813	-.0832472	.1059597
nonwhite	-.0274346	.0425991	-0.64	0.520	-.1112405	.0563712
mixed	.07402	.051851	1.43	0.154	-.0279871	.1760271
_cons	.0901995	.0511667	1.76	0.079	-.0104615	.1908604

Problems with LPM

(1) Error term not normally distributed:

- because Y_{i} has only two values, error term

$$
\varepsilon_{i}=Y_{i}-\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}\right)
$$

also binomial
(2) Error term is inherently heteroskedastic:

- we have

$$
\operatorname{Var}\left[\varepsilon_{i}\right]=\operatorname{Var}\left[Y_{i}-\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}\right)\right]=\ldots=\operatorname{Var}\left[Y_{i}\right]=p_{i}(1-
$$

$$
\text { where } p_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k} \text { so variance is a function of }
$$ x 's, not constant

- we can find estimator with higher efficiency (e.g. WLS)
(3) The probability is not bounded by 0 and 1 :

$$
\widehat{p}_{i}=\widehat{Y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\widehat{\beta}_{2} x_{i 2}+\ldots+\widehat{\beta}_{k} x_{i k}
$$

Problems with LPM

We would like something like this:

Figure:

We would like something like this:

- We would like to transform LPM

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+\varepsilon_{i}
$$

- to a function

$$
y_{i}=F\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+\varepsilon_{i}\right)
$$

- such that

$$
F= \begin{cases}0 & \text { for }-\infty \\ 1 & \text { for }+\infty\end{cases}
$$

Possible F's

- Standard normal:

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} \\
& F(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{t^{2}}{2}\right\} d t
\end{aligned}
$$

- Logistic:

$$
\begin{aligned}
f(x) & =\frac{\exp (-x)}{(1+\exp (-x))^{2}} \\
F(x) & =\frac{1}{1+\exp (-x)}
\end{aligned}
$$

Latent variable approach

- Suppose we have a continuous variable y_{i}^{*} (called latent variable), following:

$$
\begin{equation*}
y_{i}^{*}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

and the relationship

$$
Y_{i}= \begin{cases}1 & \text { for } y_{i}^{*}>0 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

- Equations (1) and (2) together define the binary model
- Underlying heuristic: the value of the qualitative dependent variable depends on a choice based on a latent (unobserved) continuous utility and a simple decision rule
- Leads to derivation of Logit and Probit models

Latent variable approach

- Let us express the probability that $Y_{i}=1$ under this approach:

$$
\begin{aligned}
p_{i} & =\operatorname{Prob}\left(Y_{i}=1\right)=\operatorname{Prob}\left(y_{i}^{*}>0\right) \\
& =\operatorname{Prob}\left(\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{k} x_{i k}+\varepsilon_{i}>0\right) \\
& =\operatorname{Prob}\left(\varepsilon_{i}>-\beta_{0}-\beta_{1} x_{i 1}-\ldots-\beta_{k} x_{i k}\right) \\
& =1-\operatorname{Prob}\left(\varepsilon_{i} \leq-\beta_{0}-\beta_{1} x_{i 1}-\ldots-\beta_{k} x_{i k}\right) \\
& =1-F\left(-\beta_{0}-\beta_{1} x_{i 1}-\ldots-\beta_{k} x_{i k}\right),
\end{aligned}
$$

where $F($.$) denotes the cumulative distribution function (cdf) of the$ error term ε_{i}

Possible distributions of the error term

- Standard normal:
- Logistic:

$$
\begin{aligned}
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} & f(x)
\end{aligned}=\frac{\exp (-x)}{(1+\exp (-x))^{2}}
$$

- Both distributions satisfy:

$$
1-F(-x)=F(x)
$$

- This allows us to write:

$$
\begin{aligned}
p_{i}=\operatorname{Prob}\left(Y_{i}=1\right) & =1-F\left(-\beta_{0}-\beta_{1} x_{i 1}-\ldots-\beta_{k} x_{i k}\right) \\
& =F\left(\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{k} x_{i k}\right)
\end{aligned}
$$

Possible distributions: pdf's

Outline

(1) Introduction

(2) Probit and logit

(3) Tobit

(4) Heckman's model
(5) Example: Taxes and female labor force participation

Probit and Logit Models

- Both models define probability of $Y_{i}=1$ as a function of explanatory variables:

$$
p_{i}=\operatorname{Prob}\left(Y_{i}=1\right)=F\left(\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{k} x_{i k}\right)
$$

where $F($.$) denotes he cdf of error term \varepsilon_{i}$

- Probit model - uses standard normal cdf
- Logit model - uses the logistic cdf
- Parameters $\beta_{0}, \beta_{2}, \ldots, \beta_{k}$ are estimated by the Maximum Likelihood method

Maximum Likelihood Estimator

- The principle of the MLE is to maximize the likelihood function L as a function of the parameter which is to be estimated
- The likelihood function represents the probability of the sample as we observe it
- For binary models with n observations, it looks as

$$
L=\prod_{i=1}^{n} p_{i}^{Y_{i}}\left(1-p_{i}\right)^{\left(1-Y_{i}\right)}
$$

with

$$
p_{i}=\operatorname{Prob}\left(Y_{i}=1\right)=F\left(\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{k} x_{i k}\right)
$$

Maximum Likelihood Estimator

- The MLE estimates of $\beta_{0}, \beta_{2}, \ldots, \beta_{k}$ are such that they maximize the logarithm of the likelihood function

$$
\ln L=\sum_{i=1}^{n} Y_{i} \ln p_{i}+\left(1-Y_{i}\right) \ln \left(1-p_{i}\right)
$$

with

$$
p_{i}=\operatorname{Prob}\left(Y_{i}=1\right)=F\left(\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{k} x_{i k}\right)
$$

- The choice of $F($.$) depends on whether we use Probit or Logit model$
- Testing multiple hypothesis - Wald or LR test
- Both models are consistent and efficient under the condition that the choice of $F(x)$ is correct (very limiting!)

Comparison of the models

- In the LPM model, we had

$$
\widehat{p}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{k} x_{i k}
$$

which was not bounded by 0 and 1

- In the Logit an Probit models, we have

$$
\widehat{p}_{i}=F\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{k} x_{i k}\right)
$$

which is bounded by 0 and 1 thanks to the properties of a cumulative distribution function

Interpretation

- In the LPM model, we had

$$
\widehat{p}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{k} x_{i k}
$$

which gave a simple interpretation of the coefficients:

$$
\frac{\partial \widehat{p}_{i}}{\partial x_{i j}}=\widehat{\beta}_{j}
$$

- In the Logit an Probit models, we have

$$
\widehat{p}_{i}=F\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{k} x_{i k}\right)
$$

which gives:

$$
\frac{\partial \widehat{p}_{i}}{\partial x_{i j}}=f\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{k} x_{i k}\right) \cdot \widehat{\beta}_{j}
$$

Logit and probit: marginal effects

- Logit and probit: more than in coefficients $\widehat{\beta}_{j}$, we are interested in marginal effects of the explanatory variables on the probability of $Y_{i}=1$:

$$
\frac{\partial \widehat{p}_{i}}{\partial x_{i j}}=f\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{i 1}+\ldots+\widehat{\beta}_{k} x_{i k}\right) \cdot \widehat{\beta}_{j}
$$

- In order to obtain an average marginal effect (impact of $x j$ on the probability of $Y_{i}=1$), the function $f($.$) in this expression is usually$ evaluated at the mean of observations:

$$
\frac{\partial \widehat{p}}{\partial x_{j}}=f\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{x}_{1}+\ldots+\widehat{\beta}_{k} \bar{x}_{k}\right) \cdot \widehat{\beta}_{j}
$$

Back to the example

Logit

Logistic regression

Log likelihood $=-152.48188$

Number of obs	$=$	330
LR chi2 (5)	$=$	7.97
Prob $>$ chi2	$=$	0.1580
Pseudo R2	$=$	0.0255

| y | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| d_coddled | .6235318 | .3151227 | 1.98 | 0.048 | .0059026 | 1.241161 |
| drugs | .3339199 | .3070374 | 1.09 | 0.277 | -.2678624 | .9357022 |
| weapon | .0745484 | .3323755 | 0.22 | 0.823 | -.5768956 | .7259925 |
| nonwhite | -.194676 | .3013182 | -0.65 | 0.518 | -.7852489 | .3958969 |
| mixed | .4732988 | .3159317 | 1.50 | 0.134 | -.1459159 | 1.092513 |
| _cons | -2.189955 | .3998198 | -5.48 | 0.000 | -2.973588 | -1.406323 |

Back to the example

Marginal effects after Logit:

Marginal effects after logit
$y=\operatorname{Pr}(y)$ (predict)
$=.17410803$

| variable | $d y / d x$ | Std. Err. | z | P>\|z| | $[$ | 95% | $C . I$. | $]$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| d_codd~d* | .0867072 | .04168 | 2.08 | 0.037 | .005016 | .168399 | .587879 | |
| drugs* | .0468831 | .0419 | 1.12 | 0.263 | -.035245 | .129011 | .612121 | |
| weapon* | .0108449 | .0489 | 0.22 | 0.825 | -.085007 | .106697 | .260606 | |
| nonwhite* | -.0277203 | .04241 | -0.65 | 0.513 | -.110851 | .05541 | .421212 | |
| mixed* | .0731195 | .05185 | 1.41 | 0.158 | -.028497 | .174736 | .263636 | |

(*) $\mathrm{dy} / \mathrm{dx}$ is for discrete change of dummy variable from 0 to 1

Back to the example

Probit

Probit regression

Log likelihood $=-152.54647$

Number of obs	$=$	330
LR chi2(5)	$=$	7.84
Prob > chi2	$=$	0.1653
Pseudo R2	$=$	0.0251

| y | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| d_coddled | .3494254 | .1749548 | 2.00 | 0.046 | .0065202 | .6923306 |
| drugs | .1839146 | .1719692 | 1.07 | 0.285 | -.1531388 | .520968 |
| weapon | .044509 | .1885126 | 0.24 | 0.813 | -.324969 | .4139869 |
| nonwhite | -.1106221 | .1687968 | -0.66 | 0.512 | -.4414577 | .2202135 |
| mixed | .2563258 | .1826897 | 1.40 | 0.161 | -.1017394 | .614391 |
| _cons | -1.281978 | .2182593 | -5.87 | 0.000 | -1.709759 | -.8541981 |

Back to the example

Marginal effects after probit:

Marginal effects after probit
$\mathrm{y}=\operatorname{Pr}(\mathrm{y})$ (predict)
$=.17582338$

variable	$d y / d x$	Std. Err.	z	P>\|z		$[.95 \%$	C.I. $]$	X
d_codd~d*	.0877187	.04232	2.07	0.038	.004782	.170655	.587879	
drugs*	.0466293	.04268	1.09	0.275	-.037014	.130272	.612121	
weapon*	.0116215	.0497	0.23	0.815	-.085786	.109029	.260606	
nonwhite*	-.0283666	.04289	-0.66	0.508	-.112433	.0557	.421212	
mixed*	.0699435	.05233	1.34	0.181	-.03263	.172517	.263636	

(*) $d y / d x$ is for discrete change of dummy variable from 0 to 1

Back to the example

Comparison

- LPM:

	Coef.	Robust. Err.	t	$\mathrm{P}>\mid \mathrm{tl}$	[95\% Conf. Interval]	
d_coddled	.0873254	.0410044	2.13	0.034	.0066569	.1679938

- Logit (marginal effect):

variable	$d y / d x$	Std. Err.	z	P>\|z		[95%	C.I. $]$	x
d_codd~d*	.0867072	.04168	2.08	0.037	.005016	.168399	.587879	

- Probit (marginal effect) :

variable	$d y / d x$	Std. Err.	z	P>\|z		[95%	C.I. $]$	x
d_codd~d*	.0877187	.04232	2.07	0.038	.004782	.170655	.587879	

Outline

(1) Introduction

(2) Probit and logit
(3) Tobit
(4) Heckman's model
(5) Example: Taxes and female labor force participation

Tobit estimation

- When Y is roughly continuous in positive values, but a lot of observations zero
- corner solutions

Example

Charity donations - many people give >0, but many give $=0$

- Problem: with OLS we would obtain below-zero fitted values
- Can be modelled with latent-variable approach as well:

$$
\begin{equation*}
y_{i}^{*}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+\varepsilon_{i} \tag{3}
\end{equation*}
$$

and the observed variable is:

$$
Y_{i}= \begin{cases}y & \text { for } y_{i}^{*}>0 \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

- latent var. y is homoskedastic and normally distributed
- Model is estimated with MLE method

Tobit estimation

- Interpretation of coefficient different than OLS
- Often similar values as OLS - tempting
- adjustment factors can be calculated
- Stata: postestimation margins
- Limitation: Relies on normality and homoskedasticity of latent variable
- Generally, Tobit one of censored regression models
- Censored data - due to some contraints, some Y could not be realized
- corner solutions - no negative hours worked
- Truncated data - due to some contraints, some Y was realized but not observed
- we have no data on subset of population

Other estimation techniques

(1) Poisson estimation

- Count data - non-negative integers $\{0,1,2, \ldots\}$
- E.g. Number of children born to a woman
- OLS may again not produce a good fit
(2) Multinomial logit/probit
- when more than two categories
(3) Ordered probit
- We have increasing discrete values of dep. variable - ranking
- Ordinal variable, e.g. survey answers on 10-point scale
(9) Interval regression
- Data not continuous, but elicited in intervals
- e.g. income bracket
(5) ... many more

Outline

(1) Introduction

(2) Probit and logit
(3) Tobit
(4) Heckman's model

(5) Example: Taxes and female labor force participation

Intuition

- Goal: we want to estimate wages of women
- We observe only wages of working women (truncation)
- OK if selection into working and not working random: is it?
- Working women probably smarter, more career-oriented, more ambitious
- Bias: non-random sample selection
- Can lead to wrong conclusions and bad policies
- Crucial: do we know, how the selection is made?

Intuition

Intuition

Heckman's sample selection model

Two-equation behavioral model

selection equation

$$
z_{i}=w_{i}^{\prime} \gamma+e_{i}
$$

outcome equation

$$
y_{i}=x_{i}^{\prime} \beta+u_{i}
$$

- where y is observed only when $z>0$ (or some other threshold)
- we observe wages (y) only for people who work $(z>0)$

$$
E\left[y_{i} \mid x_{i}, z_{i}>0\right]=x_{i}^{\prime} \beta+E\left[u_{i} \mid z_{i}>0\right]=x_{i}^{\prime} \beta+E\left[u_{i} \mid e_{i}>-w_{i}^{\prime} \gamma\right]
$$

Heckman's sample selection model

$$
E\left[y_{i} \mid x_{i}, z_{i}>0\right]=x_{i}^{\prime} \beta+E\left[u_{i} \mid z_{i}>0\right]=x_{i}^{\prime} \beta+E\left[u_{i} \mid e_{i}>-w_{i}^{\prime} \gamma\right]
$$

- If u_{i} and e_{i} are independent, $E\left[u_{i} \mid e_{i}>-w_{i}^{\prime} \beta\right]=0$.
- but unobservables in the two equations are likely to be correlated
- e.g. ability driving both the participation decision and wages
- Instead assume that u_{i} and e_{i} are jointly normal,
- with covariance σ_{12} and variances σ_{1}^{2} and σ_{2}^{2}, respectively.

$$
E\left[y_{i} \mid x_{i}, z_{i}>0\right]=x_{i}^{\prime} \beta+\frac{\sigma_{12}}{\sigma_{2}} \frac{\phi\left(w_{i}^{\prime} \gamma / \sigma_{2}\right)}{\Phi\left(w_{i}^{\prime} \gamma / \sigma_{2}\right)}=x_{i}^{\prime} \beta+\sigma_{\lambda} \lambda\left(w_{i}^{\prime} \gamma\right)
$$

Heckman's sample selection model

$$
E\left[y_{i} \mid x_{i}, z_{i}>0\right]=x_{i}^{\prime} \beta+\frac{\sigma_{12}}{\sigma_{2}} \frac{\phi\left(w_{i}^{\prime} \gamma / \sigma_{2}\right)}{\Phi\left(w_{i}^{\prime} \gamma / \sigma_{2}\right)}=x_{i}^{\prime} \beta+\sigma_{\lambda} \lambda\left(w_{i}^{\prime} \gamma\right)
$$

, where $\frac{\phi\left(w_{i}^{\prime} \gamma / \sigma_{2}\right)}{\Phi\left(w_{i}^{\prime} \gamma / \sigma_{2}\right)}$ is the inverse Mills ratio (Heckman's lambda).

- We can consistently estimate β on the selected sample if we include $\lambda\left(w_{i}^{\prime} \gamma\right)$ as an additional regressor into the outcome equation.
- Source: Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47, pp. 153-61.
- Note: Heckman got the Nobel prize for this paper.

Practical quidelines

(1) Estimate selection equation using all observations.

- $z_{i}=w_{i}^{\prime} \gamma+e_{i}$
- obtain estimates of parameters $\hat{\gamma}$
- compute the inverse Mills ratio: $\frac{\phi\left(w_{i}^{\prime} \hat{\gamma}\right)}{\Phi\left(w_{i}^{\prime} \hat{\gamma}\right)}=\hat{\lambda}\left(w_{i}^{\prime} \gamma\right)$
(2) Estimate the outcome equation using only the selected observations.
- $y_{i}=x_{i}^{\prime} \beta+\sigma_{\lambda} \hat{\lambda}\left(w_{i}^{\prime} \gamma\right)+u_{i}$
- we can test selection bias by testing significance of the lambda term (standard t-test)
- Note: standard errors have to be adjusted
- we use $\hat{\lambda}\left(w_{i}^{\prime} \gamma\right)$ instead of $\lambda\left(w_{i}^{\prime} \gamma\right)$ in the estimation

Identification issues

- selection equation: $z_{i}=w_{i}^{\prime} \gamma+e_{i}$
- outcome equation: $y_{i}=x_{i}^{\prime} \beta+\sigma_{\lambda} \hat{\lambda}\left(w_{i}^{\prime} \gamma\right)+u_{i}$
- Can we estimate β and σ_{λ} if $x_{i}=w_{i}$?
- i.e., can we use Heckman's two-step model if the determinants of participation are the same as determinants of wages?
- Yes, we can estimate it even if $x_{i}=w_{i}$ because λ is a nonlinear function.
- However, we should not rely on nonlinearity of λ function!
- Lambda can be very close to a linear function.
- Thus, $\lambda\left(w_{i}^{\prime} \gamma\right)$ might be highly correlated with x_{i} if $x_{i}=w_{i}$.
- Multicollinearity problem!
- We should try to find exclusion restriction.

Identification issues

- selection equation: $z_{i}=w_{i}^{\prime} \gamma+e_{i}$
- outcome equation: $y_{i}=x_{i}^{\prime} \beta+\sigma_{\lambda} \hat{\lambda}\left(w_{i}^{\prime} \gamma\right)+u_{i}$
- Identification should be based on exclusion restriction.
- Exclusion restriction is a variable that explains selection (participation), but not the outcome variable.
- There is at least one variable which is in w_{i}, which is not in x_{i}.
- x_{i} should be a strict subset of w_{i}.
- E.g.: presence of small children affects participation on the labor market, but not wages of women.

Outline

(1) Introduction

(2) Probit and logit

(3) Tobit
(4) Heckman's model
(5) Example: Taxes and female labor force participation

Eissa and Hoynes (2004)

Taxes and the labor market participation of married couples: The earned income tax credit

- Goal: Estimate the impact of EITC on female labor supply.
- Earned Income Tax Credit (EITC):
- largest cash-transfer program (negative income tax) for working poor (low-income) families with children (20 m families)
- conditions for eligibility: some positive earnings (work) and total family income below certain threshold
- Why: "promote both the values of family and work"
- Traditional welfare programs - adverse incentives to work
- EITC should not distort labor supply
- Does it really work?
- Potential side-effects
- based on family income $=>$ disincentives for the secondary earner
- men increase but women decrease labor supply
- EITC may thus reduce overall family labor supply of married couples

Eissa and Hoynes (2004)

Taxes and the labor market participation of married couples: The earned income tax credit

- Data for 1984 to 1996
- 6.4 m to 19.5 m recipient families
- EITC from \$755 to \$3556
- Authors restrict sample to low-educated couples.
- endogenous sample selection?
- no, because education is explanatory variable
- why not restricting the sample to low-income instead?
- income driven by unobserved characteristics that drive participation!

Eissa and Hoynes (2004)

(A) Schedule for Family with 1 child

Labor supply effects of EITC

- EITC encourages work among single women.
- Meyer and Rosenbaum (2011)
- Effect on primary earners (men or single women) is also positive.
- Those who already work are either better off or not affected
- Those who do not work are not affected
- BUT: the effect on secondary earners (married women) might be negative.
- Example: Husband's income qualifies family for EITC. If wife starts working, family might not be eligible anymore (her income will shift the family income above the threshold for eligibility).

Eissa and Hoynes (2004)

Comparison of before/after treated/control:

Table 3
EITC maximum credit and mean labor force participation rates of married couples

	Before expansion $(1989-1993)$	After expansion $(1994-1996)$	Change	Relative (to no kids) change
Panel A: maximum EITC $(1989$ to 1996 , in 1996 dollars)				
2+ Children	$\$ 1151$	$\$ 3556$	$\$ 2405$	$\$ 2082$
One child	$\$ 1151$	$\$ 2152$	$\$ 678$	
No children	$\$ 0$	$\$ 323$	$\$ 323$	
Panel B: married women				
2+ kids $(N=7095)$	$0.533(0.007)$	$0.504(0.010)$	$-0.029(0.012)$	$-0.051(0.022)$
One kid $(N=2648)$	$0.642(0.011)$	$0.642(0.017)$	$+0.001(0.020)$	$-0.021(0.027)$
No kids $(N=3120)$	$0.653(0.010)$	$0.676(0.015)$	$+0.023(0.018)$	
Panel $C:$ married men		$0.958(0.004)$	$+0.003(0.005)$	$+0.014(0.010)$
2+ kids $(N=7095)$	$0.955(0.003)$	$0.962(0.007)$	$-0.006(0.008)$	$+0.005(0.012)$
One kid $(N=2648)$	$0.968(0.004)$	$0.943(0.008)$	$-0.011(0.009)$	
No kids $(N=3120)$	$0.954(0.005)$			

Source: Authors' tabulations of March CPS for years 1990-1997. EITC figures are in nominal dollars. Sample includes married couples where the wife has less than 12 years of education. See text for further sample selection.

Eissa and Hoynes (2004): Estimation approach

(1) "Natural experiment" approach:

- Using policy reforms of EITC expansion
- Difference-in-differences method
- Treatment group: low-educated married women with children
- Control group: low-educated married women without children
(2) They estimate participation equation as a function of net wages (after EITC):
- Use two-step Heckman's method to predict wages for both working and non-working
- Exclusion restriction: family characteristics (number of children, presence of young children)

Eissa and Hoynes (2004): Estimation approach

(1) Participation equation for the Heckman wage equation:

$$
P_{i}=w_{i}^{\prime} \gamma+v_{i}=z_{i}^{\prime} \gamma_{z}+\gamma_{1} \text { children }_{i}+\gamma_{2} \text { young_child }+v_{i}
$$

(2) Wage equation with Heckman's selection term:

$$
\text { wage }_{i}=z_{i}^{\prime} \beta+\sigma_{\lambda} \hat{\lambda}\left(w_{i}^{\prime} \gamma\right)+u_{i}
$$

(3) Participation equation of interest (impact of EITC captured through changes in tax rates):

$$
P_{i t}=\alpha_{1} \text { other__inc }_{i t}+\alpha_{2} \text { wâge }_{i t}(1-\text { ATR })_{i t}+x_{i t}^{\prime} \rho+e_{i t}
$$

Eissa and Hoynes (2004): Results

Results from diff-in-diffs estimation:

Table 4
Difference in difference estimates of labor force participation rates for married couples with and without children

	Married women ($\mathrm{d} p / \mathrm{d} x$)	Married men ($\mathrm{d} p / \mathrm{d} x$)
Panel A: unconditional means (any kids)		
Any children	-0.047 (0.021)	0.011 (0.010)
Panel B: basic estimates (any kids)		
γ (any children)	-0.039 (0.021)	0.008 (0.008)
Log likelihood/ $\left(R^{2}\right)$	-8106	- 1967
Panel C: kids, 2+ kids unconditional means		
EITC1 (one child)	- 0.024 (0.027)	0.005 (0.010)
EITC2 (2+ children)	-0.052 (0.022)	0.014 (0.012)
Panel D: kids, 2+ kids, basic estimates		
γ_{g} (any kids)	-0.014 (0.027)	0.003 (0.010)
$\gamma_{\mathrm{g} 2}(2+$ children $)$	-0.034 (0.024)	0.006 (0.009)
Log likelihood/ $\left(R^{2}\right)$	-8105	- 1967
Mean of the dependent variable	0.58	0.96
Other controls (all specifications) Observations	Demographics, state une	te, state dummies, time dummies 12.863

Eissa and Hoynes (2004): Results

Results from reduced form participation equation:

Table 6
Parameter estimates for labor force participation equation for married couples with children, 1984-1996

Variable	Married women	Married men
Specification: average tax rate evaluated at full-time $(40 \mathrm{~h})$		
\# of children	$-0.045(0.0065)$	$-0.003(0.001)$
\# preschool children	$-0.109(0.006)$	$-0.005(0.001)$
Black	$0.076(0.017)$	$-0.025(0.007)$
Other race	$0.014(0.017)$	$-0.048(0.008)$
Age	$0.045(0.006)$	$0.001(0.002)$
Age squared (per 100)	$-0.067(0.008)$	$-0.001(0.002)$
State unemployment rate	$-0.004(0.004)$	$-0.004(0.001)$
Net wage, $w\left(1-\tau^{\mathrm{a}}\right)$	$0.027(0.005)$	$0.003(0.001)$
Net unearned income, y^{n}	$-0.001(0.0003)$	$-0.005(0.0003)$
Other controls	State, time dummies, $2+$ children \times time interactions	
Pseudo R^{2}	0.07	0.18
Mean of dep. variable	0.556	0.960
Observations		17,178
"Elasticity" of participation		
Wage	0.267	0.032
Income	-0.039	-0.007

Eissa and Hoynes (2004): Results

Results from reduced form participation equation:

Table 8
Simulated changes in labor force participation responses for EITC expansion 1984-1996

	Percent of sample	Married		Marrie		Family	
		Change i probabilit	ployment	Chang probab	nployment	EITC	
		Level	Percent	Level	Percent	Gross	Net
Overall	100	-0.011	-2.4	0.002	0.2	927	858
Grouping by	bands predicted w						
Decile 1		-0.017	-4.2	0.006	0.6	1379	1315
Decile 2		-0.016	-3.8	0.004	0.4	1349	1279
Decile 3		-0.015	-3.6	0.003	0.3	1218	1132
Decile 4		-0.013	-3.0	0.003	0.3	1087	1022
Decile 5		-0.013	-2.3	0.002	0.2	1019	939
Decile 6		-0.011	-1.8	0.002	0.2	778	718
Decile 7		-0.007	-1.5	0.002	0.2	736	704
Decile 8		-0.010	-1.8	0.000	0.0	650	539
Decile 9		-0.009	-1.7	0.000	0.0	642	546
Decile 10		-0.005	-0.9	0.000	0.0	415	356
Grouping by	cation in 1996 EITC	segment					
Phase-in	8.8	0.011	10.0	0.004	0.6	1144	1289
Flat	6.0	-0.015	-6.5	0.002	0.2	2424	2355
Phase-out	42.9	-0.021	-5.0	0.002	0.2	1591	1455
\geq Phase-out	42.3	-0.006	-0.8	0.001	0.1	0	-41

Eissa and Hoynes (2004): Downsides of the paper (1)

- Assumptions of the diff-in-diffs approach:
(1) Common trend assumption of the same trend
- families with and without children can be different!!!
- the two groups need to face the same trend in labor supply
- problem would be if work preferences of mothers changed differently that those of non-mothers
(2) assumption of no composition changes
- composition of groups stays the same over time
- no effect of EITC on decision to get married and have children

Eissa and Hoynes (2004): Downsides of the paper (2)

Assumption of the common trend in LFP

(A) Wife Education<12

Eissa and Hoynes (2004): Downsides of the paper (3)

- Unitary household labor supply model:
- Wife's participation decision has no effect on husband's.
- Do you think that there are many families in which husband decides to stay at home if his wife is working, while he would go to work if his wife is at home?
- Participation in the shadow economy:
- Can the results be invalidated because authors did not consider shadow economy?
- Diff-in-diffs approach: assumption of the same trend.
- It would be invalidated only if treated women were more likely to start working in the shadow economy after the EITC expansion than the control group women.

Bibliography

- Eissa, N., \& Hoynes, H. W. (2004). Taxes and the labor market participation of married couples: The earned income tax credit. Journal of Public Economics, 88(9-10), 1931-1958. doi:10.1016/j.jpubeco.2003.09.005
- Heckman, J. J. (1979). Sample Selection Bias as a Specification Error. Econometrica, 47(1), 153-161. doi:10.2307/1912352

EVROPSKÁ UNIE

Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Toto dílo podléhá licenci Creative Commons
Uved'te původ - Zachovejte licenci 4.0 Mezinárodní.

