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Motivation

Many topics when dependent variable is a dummy variable

For any discrete choice, dependent variable is typically a dummy
variable:

Will a person get a loan?
Will a customer buy a product?
Will a person study college?
Will a woman work if she has 2+ kids?
Will there be re-offense in cases of domestic violence if the offender is
arrested on the spot?
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Outline

Today: models with outcome variable

Yi =

{
1
0

,

depending on qualitative choice (binary models)

These will be:

Linear Probability Model (LPM)
Logit Model
Probit Model
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Outline

1 Introduction

2 Probit and logit

3 Tobit

4 Heckman’s model

5 Example: Taxes and female labor force participation
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Probability distribution of Yi

Yi is a discrete random variable with Bernoulli distribution:

Yi =

{
1 with probability pi
0 with probability 1− pi

We can find the expected value:

E [Yi ] = 1 · pi + 0 · (1− pi ) = pi

and the variance:

Var [Yi ] = E
[
Y 2
i

]
− (E [Yi ])

2 = 12 · pi + 02 · (1− pi )− p2
i

= pi − p2
i = pi (1− pi )
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Linear Probability Model

Running the usual OLS on dummy dependent variable:

Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi

Why we call it the ”linear probability” model?

Let us take the expectated value:

E [Yi ] = β0 + β1xi1 + β2xi2 + . . .+ βkxik + E [εi ]

pi = β0 + β1xi1 + β2xi2 + . . .+ βkxik

Hence, pi = Prob (Yi = 1) is a linear function of explanatory variables
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Example

Angrist, J. (2006) Instrumental Variables Methods in Experimental
Criminological Research: What, Why, and How?

Estimate determinants of re-offense status y for cases of domestic
violence (y is dummy indicating cases when re-offense occurred)

Main explanatory variable:

d coddled =

{
1 if the offender was not arrested
0 if the offender was arrested

Other controls:

race dummies

dummies indicating the presence of weapons and drugs
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Example

OLS (robust SE)

                                                                              
       _cons     .0901995   .0511667     1.76   0.079    -.0104615    .1908604
       mixed       .07402    .051851     1.43   0.154    -.0279871    .1760271
    nonwhite    -.0274346   .0425991    -0.64   0.520    -.1112405    .0563712
      weapon     .0113562   .0480876     0.24   0.813    -.0832472    .1059597
       drugs     .0479707   .0437274     1.10   0.273    -.0380548    .1339962
   d_coddled     .0873254   .0410044     2.13   0.034     .0066569    .1679938
                                                                              
           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =  .38457
                                                       R-squared     =  0.0239
                                                       Prob > F      =  0.1763
                                                       F(  5,   324) =    1.54
Linear regression                                      Number of obs =     330
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Problems with LPM

1 Error term not normally distributed:

because Yi has only two values, error term

εi = Yi − (β0 + β1xi1 + β2xi2 + . . .+ βkxik)

also binomial

2 Error term is inherently heteroskedastic:

we have

Var [εi ] = Var [Yi−(β0+β1xi1+β2xi2+. . .+βkxik)] = ... = Var [Yi ] = pi (1−pi ) ,

where pi = β0 + β1xi1 + β2xi2 + . . .+ βkxik so variance is a function of
x’s, not constant
we can find estimator with higher efficiency (e.g. WLS)

3 The probability is not bounded by 0 and 1:

p̂i = Ŷi = β̂0 + β̂1xi1 + β̂2xi2 + . . .+ β̂kxik
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Problems with LPM

X

Y 1

0

p = Y = β0+β1X

p>1

0<p<1

p<0
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We would like something like this:

Figure:

X

Y 1

0

p=F(β0+β1X)
0<p<1
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We would like something like this:

We would like to transform LPM

yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi

to a function

yi = F (β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi )

such that

F =

{
0 for −∞
1 for +∞
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Possible F’s

Standard normal:

f (x) =
1√
2π

exp

{
−x2

2

}

F (x) =

x∫
−∞

1√
2π

exp

{
− t2

2

}
dt

Logistic:

f (x) =
exp(−x)

(1 + exp(−x))2

F (x) =
1

1 + exp(−x)
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Latent variable approach

Suppose we have a continuous variable y∗i (called latent variable),
following:

y∗i = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi (1)

and the relationship

Yi =

{
1 for y∗i > 0
0 otherwise

(2)

Equations (1) and (2) together define the binary model

Underlying heuristic: the value of the qualitative dependent variable
depends on a choice based on a latent (unobserved) continuous utility
and a simple decision rule

Leads to derivation of Logit and Probit models
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Latent variable approach

Let us express the probability that Yi = 1 under this approach:

pi = Prob(Yi = 1) = Prob(y∗i > 0)

= Prob(β0 + β1xi1 + . . .+ βkxik + εi > 0)

= Prob(εi > −β0 − β1xi1 − . . .− βkxik)

= 1− Prob(εi ≤ −β0 − β1xi1 − . . .− βkxik)

= 1− F (−β0 − β1xi1 − . . .− βkxik) ,

where F (.) denotes the cumulative distribution function (cdf) of the
error term εi
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Possible distributions of the error term

Standard normal:

f (x) =
1√
2π

exp

{
−x2

2

}

F (x) =

x∫
−∞

1√
2π

exp

{
− t2

2

}
dt

Logistic:

f (x) =
exp(−x)

(1 + exp(−x))2

F (x) =
1

1 + exp(−x)

Both distributions satisfy:

1− F (−x) = F (x)

This allows us to write:

pi = Prob(Yi = 1) = 1− F (−β0 − β1xi1 − . . .− βkxik)

= F (β0 + β1xi1 + . . .+ βkxik)
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Possible distributions: pdf’s
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Outline

1 Introduction

2 Probit and logit

3 Tobit

4 Heckman’s model

5 Example: Taxes and female labor force participation
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Probit and Logit Models

Both models define probability of Yi = 1 as a function of explanatory
variables:

pi = Prob(Yi = 1) = F (β0 + β1xi1 + . . .+ βkxik) ,

where F (.) denotes he cdf of error term εi

Probit model - uses standard normal cdf

Logit model - uses the logistic cdf

Parameters β0, β2, . . ., βk are estimated by the Maximum Likelihood
method
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Maximum Likelihood Estimator

The principle of the MLE is to maximize the likelihood function L as a
function of the parameter which is to be estimated

The likelihood function represents the probability of the sample as we
observe it

For binary models with n observations, it looks as

L =
n∏

i=1

pYi
i (1− pi )

(1−Yi )

with
pi = Prob(Yi = 1) = F (β0 + β1xi1 + . . .+ βkxik)
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Maximum Likelihood Estimator

The MLE estimates of β0, β2, . . ., βk are such that they maximize
the logarithm of the likelihood function

ln L =
n∑

i=1

Yi ln pi + (1− Yi ) ln(1− pi )

with
pi = Prob(Yi = 1) = F (β0 + β1xi1 + . . .+ βkxik)

The choice of F (.) depends on whether we use Probit or Logit model

Testing multiple hypothesis - Wald or LR test

Both models are consistent and efficient under the condition that
the choice of F (x) is correct (very limiting!)
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Comparison of the models

In the LPM model, we had

p̂i = β̂0 + β̂1xi1 + . . .+ β̂kxik ,

which was not bounded by 0 and 1

In the Logit an Probit models, we have

p̂i = F (β̂0 + β̂1xi1 + . . .+ β̂kxik) ,

which is bounded by 0 and 1 thanks to the properties of a cumulative
distribution function
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Interpretation

In the LPM model, we had

p̂i = β̂0 + β̂1xi1 + . . .+ β̂kxik ,

which gave a simple interpretation of the coefficients:

∂p̂i
∂xij

= β̂j

In the Logit an Probit models, we have

p̂i = F (β̂0 + β̂1xi1 + . . .+ β̂kxik) ,

which gives:
∂p̂i
∂xij

= f (β̂0 + β̂1xi1 + . . .+ β̂kxik) · β̂j
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Logit and probit: marginal effects

Logit and probit: more than in coefficients β̂j , we are interested in
marginal effects of the explanatory variables on the probability of
Yi = 1 :

∂p̂i
∂xij

= f (β̂0 + β̂1xi1 + . . .+ β̂kxik) · β̂j

In order to obtain an average marginal effect (impact of xj on the
probability of Yi = 1), the function f (.) in this expression is usually
evaluated at the mean of observations:

∂p̂

∂xj
= f (β̂0 + β̂1x1 + . . .+ β̂kxk) · β̂j
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Back to the example
Logit

                                                                              
       _cons    -2.189955   .3998198    -5.48   0.000    -2.973588   -1.406323
       mixed     .4732988   .3159317     1.50   0.134    -.1459159    1.092513
    nonwhite     -.194676   .3013182    -0.65   0.518    -.7852489    .3958969
      weapon     .0745484   .3323755     0.22   0.823    -.5768956    .7259925
       drugs     .3339199   .3070374     1.09   0.277    -.2678624    .9357022
   d_coddled     .6235318   .3151227     1.98   0.048     .0059026    1.241161
                                                                              
           y        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -152.48188                       Pseudo R2       =     0.0255
                                                  Prob > chi2     =     0.1580
                                                  LR chi2(5)      =       7.97
Logistic regression                               Number of obs   =        330
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Back to the example
Marginal effects after Logit:

(*) dy/dx is for discrete change of dummy variable from 0 to 1
                                                                              
   mixed*    .0731195      .05185    1.41   0.158  -.028497  .174736   .263636
nonwhite*   -.0277203      .04241   -0.65   0.513  -.110851   .05541   .421212
  weapon*    .0108449       .0489    0.22   0.825  -.085007  .106697   .260606
   drugs*    .0468831       .0419    1.12   0.263  -.035245  .129011   .612121
d_codd~d*    .0867072      .04168    2.08   0.037   .005016  .168399   .587879
                                                                              
variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X
                                                                              
         =  .17410803
      y  = Pr(y) (predict)
Marginal effects after logit
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Back to the example
Probit

                                                                              
       _cons    -1.281978   .2182593    -5.87   0.000    -1.709759   -.8541981
       mixed     .2563258   .1826897     1.40   0.161    -.1017394     .614391
    nonwhite    -.1106221   .1687968    -0.66   0.512    -.4414577    .2202135
      weapon      .044509   .1885126     0.24   0.813     -.324969    .4139869
       drugs     .1839146   .1719692     1.07   0.285    -.1531388     .520968
   d_coddled     .3494254   .1749548     2.00   0.046     .0065202    .6923306
                                                                              
           y        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -152.54647                       Pseudo R2       =     0.0251
                                                  Prob > chi2     =     0.1653
                                                  LR chi2(5)      =       7.84
Probit regression                                 Number of obs   =        330
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Back to the example
Marginal effects after probit:

(*) dy/dx is for discrete change of dummy variable from 0 to 1
                                                                              
   mixed*    .0699435      .05233    1.34   0.181   -.03263  .172517   .263636
nonwhite*   -.0283666      .04289   -0.66   0.508  -.112433    .0557   .421212
  weapon*    .0116215       .0497    0.23   0.815  -.085786  .109029   .260606
   drugs*    .0466293      .04268    1.09   0.275  -.037014  .130272   .612121
d_codd~d*    .0877187      .04232    2.07   0.038   .004782  .170655   .587879
                                                                              
variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X
                                                                              
         =  .17582338
      y  = Pr(y) (predict)
Marginal effects after probit
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Back to the example
Comparison

LPM:

                                                                              
       _cons     .0901995   .0511667     1.76   0.079    -.0104615    .1908604
       mixed       .07402    .051851     1.43   0.154    -.0279871    .1760271
    nonwhite    -.0274346   .0425991    -0.64   0.520    -.1112405    .0563712
      weapon     .0113562   .0480876     0.24   0.813    -.0832472    .1059597
       drugs     .0479707   .0437274     1.10   0.273    -.0380548    .1339962
   d_coddled     .0873254   .0410044     2.13   0.034     .0066569    .1679938
                                                                              
           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =  .38457
                                                       R-squared     =  0.0239
                                                       Prob > F      =  0.1763
                                                       F(  5,   324) =    1.54
Linear regression                                      Number of obs =     330

Logit (marginal effect):

(*) dy/dx is for discrete change of dummy variable from 0 to 1
                                                                              
   mixed*    .0731195      .05185    1.41   0.158  -.028497  .174736   .263636
nonwhite*   -.0277203      .04241   -0.65   0.513  -.110851   .05541   .421212
  weapon*    .0108449       .0489    0.22   0.825  -.085007  .106697   .260606
   drugs*    .0468831       .0419    1.12   0.263  -.035245  .129011   .612121
d_codd~d*    .0867072      .04168    2.08   0.037   .005016  .168399   .587879
                                                                              
variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X
                                                                              
         =  .17410803
      y  = Pr(y) (predict)
Marginal effects after logit

Probit (marginal effect) :

(*) dy/dx is for discrete change of dummy variable from 0 to 1
                                                                              
   mixed*    .0699435      .05233    1.34   0.181   -.03263  .172517   .263636
nonwhite*   -.0283666      .04289   -0.66   0.508  -.112433    .0557   .421212
  weapon*    .0116215       .0497    0.23   0.815  -.085786  .109029   .260606
   drugs*    .0466293      .04268    1.09   0.275  -.037014  .130272   .612121
d_codd~d*    .0877187      .04232    2.07   0.038   .004782  .170655   .587879
                                                                              
variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X
                                                                              
         =  .17582338
      y  = Pr(y) (predict)
Marginal effects after probit
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Outline

1 Introduction

2 Probit and logit

3 Tobit

4 Heckman’s model

5 Example: Taxes and female labor force participation
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Tobit estimation

When Y is roughly continuous in positive values, but a lot of
observations zero

corner solutions

Example

Charity donations - many people give > 0, but many give = 0

Problem: with OLS we would obtain below-zero fitted values

Can be modelled with latent-variable approach as well:

y∗i = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi (3)

and the observed variable is:

Yi =

{
y for y∗i > 0
0 otherwise

(4)

latent var. y is homoskedastic and normally distributed

Model is estimated with MLE method
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Tobit estimation

Interpretation of coefficient different than OLS

Often similar values as OLS - tempting
adjustment factors can be calculated
Stata: postestimation margins

Limitation: Relies on normality and homoskedasticity of latent variable

Generally, Tobit one of censored regression models

Censored data - due to some contraints, some Y could not be realized

corner solutions - no negative hours worked

Truncated data - due to some contraints, some Y was realized but not
observed

we have no data on subset of population
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Other estimation techniques

1 Poisson estimation

Count data - non-negative integers {0, 1, 2, ...}
E.g. Number of children born to a woman

OLS may again not produce a good fit

2 Multinomial logit/probit

when more than two categories

3 Ordered probit

We have increasing discrete values of dep. variable - ranking

Ordinal variable, e.g. survey answers on 10-point scale

4 Interval regression

Data not continuous, but elicited in intervals

e.g. income bracket

5 ... many more
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Outline
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3 Tobit

4 Heckman’s model

5 Example: Taxes and female labor force participation
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Intuition

Goal: we want to estimate wages of women

We observe only wages of working women (truncation)

OK if selection into working and not working random: is it?

Working women probably smarter, more career–oriented, more
ambitious

Bias: non-random sample selection

Can lead to wrong conclusions and bad policies

Crucial: do we know, how the selection is made?
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Intuition
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Intuition
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Heckman’s sample selection model

Two-equation behavioral model

selection equation
zi = w ′i γ + ei

outcome equation
yi = x ′iβ + ui

where y is observed only when z > 0 (or some other threshold)

we observe wages (y) only for people who work (z > 0)

E [yi |xi , zi > 0] = x ′iβ + E [ui |zi > 0] = x ′iβ + E [ui |ei > −w ′i γ]
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Heckman’s sample selection model

E [yi |xi , zi > 0] = x ′iβ + E [ui |zi > 0] = x ′iβ + E [ui |ei > −w ′i γ]

If ui and ei are independent, E [ui |ei > −w ′i β] = 0.

but unobservables in the two equations are likely to be correlated
e.g. ability driving both the participation decision and wages

Instead assume that ui and ei are jointly normal,

with covariance σ12 and variances σ2
1 and σ2

2 , respectively.

E [yi |xi , zi > 0] = x ′iβ +
σ12

σ2

φ(w ′i γ/σ2)

Φ(w ′i γ/σ2)
= x ′iβ + σλλ(w ′i γ)
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Heckman’s sample selection model

E [yi |xi , zi > 0] = x ′iβ +
σ12

σ2

φ(w ′i γ/σ2)

Φ(w ′i γ/σ2)
= x ′iβ + σλλ(w ′i γ)

, where
φ(w ′

i γ/σ2)

Φ(w ′
i γ/σ2) is the inverse Mills ratio (Heckman’s lambda).

We can consistently estimate β on the selected sample if we
include λ(w ′i γ) as an additional regressor into the outcome equation.

Source: Heckman, J. (1979). Sample selection bias as a specification
error. Econometrica, 47, pp. 153-61.

Note: Heckman got the Nobel prize for this paper.
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Practical quidelines

1 Estimate selection equation using all observations.

zi = w ′i γ + ei
obtain estimates of parameters γ̂

compute the inverse Mills ratio:
φ(w ′

i γ̂)

Φ(w ′
i γ̂)

= λ̂(w ′i γ)

2 Estimate the outcome equation using only the selected
observations.

yi = x ′i β + σλλ̂(w ′i γ) + ui
we can test selection bias by testing significance of the lambda term
(standard t-test)

Note: standard errors have to be adjusted

we use λ̂(w ′i γ) instead of λ(w ′i γ) in the estimation
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Identification issues

selection equation: zi = w ′i γ + ei

outcome equation: yi = x ′iβ + σλλ̂(w ′i γ) + ui

Can we estimate β and σλ if xi = wi?

i.e., can we use Heckman’s two–step model if the determinants of
participation are the same as determinants of wages?
Yes, we can estimate it even if xi = wi because λ is a nonlinear
function.
However, we should not rely on nonlinearity of λ function!

Lambda can be very close to a linear function.
Thus, λ(w ′

i γ) might be highly correlated with xi if xi = wi .
Multicollinearity problem!

We should try to find exclusion restriction.
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Identification issues

selection equation: zi = w ′i γ + ei

outcome equation: yi = x ′iβ + σλλ̂(w ′i γ) + ui

Identification should be based on exclusion restriction.

Exclusion restriction is a variable that explains selection (participation),
but not the outcome variable.

There is at least one variable which is in wi , which is not in xi .

xi should be a strict subset of wi .

E.g.: presence of small children affects participation on the labor
market, but not wages of women.
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Outline

1 Introduction

2 Probit and logit

3 Tobit

4 Heckman’s model

5 Example: Taxes and female labor force participation
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Eissa and Hoynes (2004)
Taxes and the labor market participation of married couples: The earned income tax
credit

Goal: Estimate the impact of EITC on female labor supply.

Earned Income Tax Credit (EITC):

largest cash-transfer program (negative income tax) for working poor
(low-income) families with children (20m families)
conditions for eligibility: some positive earnings (work) and total family
income below certain threshold
Why: “promote both the values of family and work”
Traditional welfare programs - adverse incentives to work
EITC should not distort labor supply
Does it really work?

Potential side-effects

based on family income => disincentives for the secondary earner

men increase but women decrease labor supply

EITC may thus reduce overall family labor supply of married couples
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Eissa and Hoynes (2004)
Taxes and the labor market participation of married couples: The earned income tax
credit

Data for 1984 to 1996

6.4m to 19.5m recipient families

EITC from $755 to $3556

Authors restrict sample to low-educated couples.

endogenous sample selection?
no, because education is explanatory variable
why not restricting the sample to low-income instead?
income driven by unobserved characteristics that drive participation!
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Eissa and Hoynes (2004)
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Labor supply effects of EITC

EITC encourages work among single women.

Meyer and Rosenbaum (2011)

Effect on primary earners (men or single women) is also positive.

Those who already work are either better off or not affected
Those who do not work are not affected

BUT: the effect on secondary earners (married women) might be
negative.

Example: Husband’s income qualifies family for EITC. If wife starts
working, family might not be eligible anymore (her income will shift the
family income above the threshold for eligibility).
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Eissa and Hoynes (2004)

Comparison of before/after treated/control:
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Eissa and Hoynes (2004): Estimation approach

1 ”Natural experiment” approach:

Using policy reforms of EITC expansion

Difference-in-differences method

Treatment group: low-educated married women with children
Control group: low-educated married women without children

2 They estimate participation equation as a function of net wages (after
EITC):

Use two–step Heckman’s method to predict wages for both working
and non–working

Exclusion restriction: family characteristics (number of children,
presence of young children)
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Eissa and Hoynes (2004): Estimation approach

1 Participation equation for the Heckman wage equation:

Pi = w ′i γ + vi = z ′i γz + γ1childreni + γ2young child + vi

2 Wage equation with Heckman’s selection term:

wagei = z ′iβ + σλλ̂(w ′i γ) + ui

3 Participation equation of interest (impact of EITC captured through
changes in tax rates):

Pit = α1other incit + α2 ˆwage it(1− ATR)it + x ′itρ+ eit
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Eissa and Hoynes (2004): Results

Results from diff–in–diffs estimation:
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Eissa and Hoynes (2004): Results

Results from reduced form participation equation:
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Eissa and Hoynes (2004): Results

Results from reduced form participation equation:
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Eissa and Hoynes (2004): Downsides of the paper (1)

Assumptions of the diff-in-diffs approach:

1 Common trend assumption of the same trend

families with and without children can be different!!!
the two groups need to face the same trend in labor supply
problem would be if work preferences of mothers changed differently
that those of non-mothers

2 assumption of no composition changes

composition of groups stays the same over time
no effect of EITC on decision to get married and have children
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Eissa and Hoynes (2004): Downsides of the paper (2)

Assumption of the common trend in LFP
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Eissa and Hoynes (2004): Downsides of the paper (3)

Unitary household labor supply model:

Wife’s participation decision has no effect on husband’s.
Do you think that there are many families in which husband decides to
stay at home if his wife is working, while he would go to work if his
wife is at home?

Participation in the shadow economy:

Can the results be invalidated because authors did not consider shadow
economy?
Diff-in-diffs approach: assumption of the same trend.
It would be invalidated only if treated women were more likely to start
working in the shadow economy after the EITC expansion than the
control group women.
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