ESTIMATING DETERRENCE II: QUASI-NATURAL EXPERIMENTS

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

More creative diff-in-diff

- Comparing groups within population that are treated differently
- Levitt, S. D. (1998). Juvenile Crime and Punishment. *Journal of Political Economy*, *106*(6), 1156-1185.

Year-to-year percentage changes in crime rates by age cohort

	Relative Punitiveness of Adult vs. Juvenile Court in States in Which Age of Majority Is 18					
Cohort	Most Punitive (N = 61) (1)	Intermediate (N = 115) (2)	Least Punitive (N = 102) (3)	Difference of $(1) - (3)$ (4)		
	· · · · · · · · · · · · · · · · · · ·			Violent Crime		
15–16	40.6	37.5 (2.6)	39.9 (3.8)	.7 (5.4)		
16–17	25.1 (3.1)	(2.3) 28.4 (2.4)	24.8 (3.2)	.3 (4.5)		
17–18	-3.8 (3.6)	10.2	(3.1) (3.4)	-26.9 (5.0)		
18–19	(3.0) .5 (2.4)	(3.1) 3.8 (1.8)	5.9 (1.6)	(3.6) -5.4 (2.9)		

Year-to-year percentage changes in crime rates by age cohort

Relative Punitiveness in States in Which Age of Majority Is 17					
Most Punitive (N = 29) (5)	Least Punitive (N = 29) (6)	Difference of (5) - (6) (7)			
$51.2 \\ (5.4) \\ 13.0 \\ (4.4) \\ 26.3 \\ (6.1) \\ -3.8 \\ (2.7)$	37.1 (5.0) 39.4 (6.7) 29.7 (3.6) .5 (2.5)	$ \begin{array}{r} 14.1 \\ (7.2) \\ -26.4 \\ (8.0) \\ -3.4 \\ (7.1) \\ -4.3 \\ (3.7) \\ \end{array} $			

	Percentage Change in Violent Crime			Percentage Change in Property Crime		
VARIABLE	(1)	(2)	(3)	(4)	(5)	(6)
Become adult \times relative	114	117	121	049	053	050
punitiveness	(.025)	(.022)	(.018)	(.015)	(.013)	(.009)
Become adult	.257	.199	.214	.115	.083	.090
	(.054)	(.052)	(.039)	(.034)	(.036)	(.025)
Relative punitiveness	025	019	090	$015^{'}$	008^{-}	008
-	(.006)	(.005)	(.015)	(.004)	(.003)	(.007)
Δ % black	•••	42	70	· · · · /	19	52
		(.05)	(.24)		(.03)	(.13)
Δ % metropolitan		. 20	35		.03	21
1		(.04)	(.15)		(.02)	(06)
Δ unemployment rate		-1.14	36		.83	1.02
I		(.76)	(.74)		(36)	(38)
Percentage Δ in crime		.41	.52		06	08
among those aged 22+		(.08)	(.06)		(.06)	(.05)
Age, cohort, and year						
dummies?	no	ves	ves	no	ves	ves
State-cohort interactions?	no	no	ves	no	no	ves
Adjusted R^2	.053	.414	.445	.039	.465	.521

Regression Analysis of Crime Rates and the Transition from Juvenile to Adult Court

NOTE.—Dependent variable is the percentage change in the named crime category for a cohort from the preceding to the current year. The unit of observation is an age cohort in a state and year. Cohorts aged 15–21 are included in the regressions for the period 1978–93, yielding a total of 2,737 observations. All regressions are estimated using weighted least squares, with state populations used as weights. White standard errors are in parentheses. The interaction in the first row captures the effect of relative punitiveness on crime rates in the year following transition to the adult court.

Individual data & quasi-natural experiment

- Drago, F., Galbiati, R., & Vertova, P. (2009). The deterrent effects of prison: Evidence from a natural experiment. *Journal of political Economy*, *117*(2), 257-280.
- Large amnesty in Italy in 2006 produced unique differences in the sentence for otherwise identical released prisoners if they commit another crime
- Must serve the sentence forgiven => shorter sentence for those who came to prison earlier

		MEAN		
	Whole Sample (1)	Residual Sentence below the Median (2)	Residual Sentence above the Median (3)	Difference (4)
Original sentence (in				
months)	38.982	39.089	38.891	198
	(.225)	(.306)	(.325)	(.447)
Residual sentence (in				
months)	14.511	8.475	19.730	-11.255
	(.070)	(.063)	(.093)	(.113)
Recidivism	.115	.129	.102	.027
	(.002)	(.003)	(.003)	(.004)
Age on exit	38.764	38.762	38.766	004
0	(.069)	(.104)	(.102)	(.146)
Married	.284	.275	.292	017
	(.003)	(.005)	(.004)	(.006)
Permanently employed	.339	.342	.337	.006
	(.005)	(.007)	(.007)	(.010)
Percentage of males	.954	.957	.951	.006
0	(.001)	(.002)	(.002)	(.003)
Share of Italians	.621	.595	.643	048
	(.003)	(.005)	(.004)	(.007)
First judgment taken	.998	.999	.998	.001
	(.001)	(.001)	(.001)	(.001)

Individual Characteristics for Residual Sentences Above and Below the Median (N = 20,950)

FIG. 3.—Residual sentence and recidivism. Black bars represent average recidivism for individuals with residual sentences below the median conditional on the original sentence, and white bars represent average recidivism for individuals with residual sentences above the median conditional on the original sentence.

(1)	(2)	(3)
0016	0017	0017
(-6.54)	(-6.87)	(-7.02)
0001	.0002	.0002
(-1.93)	(2.22)	(2.61)
No	Yes	Yes
No	No	Yes
.005	.028	.032
20,950	19,316	19,316
	(1) 0016 (-6.54) 0001 (-1.93) No No .005 20,950	$\begin{array}{c cccc} (1) & (2) \\ \hline0016 &0017 \\ (-6.54) & (-6.87) \\0001 & .0002 \\ (-1.93) & (2.22) \\ No & Yes \\ No & Yes \\ No & No \\ .005 & .028 \\ 20,950 & 19,316 \end{array}$

BASELINE RESULTS

NOTE. – Logit estimates are reported. The dependent variable is equal to one if the individual returned to prison after release and zero otherwise. Coefficients are marginal effects evaluated at the mean of the independent variables. Robust Zstatistics are in parentheses. Individual variables include education levels, age at the date of release, a dummy indicating marital status, nationality, juridical status, and employment condition before imprisonment.

Key concepts

- Estimating causal effects of p and F on crime why can't use simple correlations
- Quasi-natural experiments
- Difference-in-differences
 - Difference within group over time, then difference treatment and control after
 - Regressions: dummies pick up the unobserved effect of a region, year, cohort etc
- Diff-in-diff studies generally find some deterrent effect of punishment on crime

- Empirical knowledge (in economics and other social science topics, for that matter)
 - How does it develop?
 - How can we tell whether intervention X indeed affects Y?
 - What to do about conflicting studies?
- The case study: abortion and crime

Abortion and crime

- Donohue, J. and Steve Levitt (2001): Legalized Abortion and Crime, *Quarterly Journal of Economics*.
- Main claim: Legalizing abortion in the early 1970'sin the U.S. was a significant factor in the decline of crime during the 1990's

Institutional background

- Abortion historically illegal
- Options: illegal abortion, travel abroad
- 1970: legalized by NY, CA, WA, HI, AK
- 1973 Supreme court case Roe vs Wade: nationwide legalization
- Gradual increase in abortions since legalization

Theoretical mechanisms

- Crime and age/social status profile
- 1. Cohort size
- 2. Selection effects

Empirical evidence 1

- The paper presents evidence that legalizing abortion cut crime
- Each piece of evidence requires less stringent assumptions to establish a causal effect

1. National time series

Time series (just a glimpse at data)

Evidence 2: Early vs late legalizers

 In the early legalizing states, crime rates began to fall few years earlier and the drop was more pronounced than in the rest of the country

Early vs. late legalizers: diverging trends (raw diff-in-diff)

CRIME TRENDS FOR STATES LEGALIZING ABORTION EARLY VERSUS THE REST OF THE UNITED STATES

	Percent change in crime rate over the period					
Crime category	1976 - 1982	1982 - 1985	1988–1994	1994–1997		
Violent crime					-	
Early legalizers	16.6	11.1	1.9	-25.8		
Rest of U. S.	20.9	13.2	15.4	-11.0		
Difference	-4.3	-2.1	-13.4	-14.8		
	(5.5)	(5.4)	(4.4)	(3.3)		

Evidence 3: Panel data regressions

Changes in crime are negatively related to effective abortion rates

$$Effective_Abortion_{t} = \sum_{a} Abortion^{*}_{t-a} (Arrests_{a} / Arrests_{total}),$$

- Regressions explaining the crime rate as a function of the effective abortions, socio-econ control variables
- State and year F.E.

Percentage change in crime correlates with the abortion rate

Percentage change in crime correlates with the abortion rate

TABLE II

CRIME CHANGES 1985–1997 AS A FUNCTION OF ABORTION RATES 1973–1976

Abortion frequency Ranked by	Effective abortions	% Change in crime rate, 1973–1985		% Cha	ange in crim 1985–1997	e rate,	
effective bortion rate in 1997)	per 1000 live births, 1997	Violent crime	Property crime	Murder	Violent crime	Property crime	Murder
Lowest Medium Highest	$67.5 \\ 135.0 \\ 257.1$	+ 31.8 + 28.8 + 32.2	+ 29.8 + 31.1 + 15.2	-21.1 -19.7 -9.7	+29.2 +18.0 -2.4	+ 9.3 + 2.2 -23.1	+4.1 -12.6 -25.9

Percentage change in crime correlates with the abortion rate

TABLE IV PANEL-DATA ESTIMATES OF THE RELATIONSHIP BETWEEN ABORTION RATES AND CRIME

	ln(Vi crim cap	iolent e per oita)	ln(Pro crim cap	operty e per ita)	ln(Mur cap	der per ita)
Variable	(1)	(2)	(3)	(4)	(5)	(6)
"Effective" abortion rate	137	129	095	091	108	121
(× 100)	(.023)	(.024)	(.018)	(.018)	(.036)	(.047)
ln(prisoners per capita)		027		159		231
(t - 1)		(.044)		(.036)		(.080)
ln(police per capita)		028		049		300
(t - 1)		(.045)		(.045)		(.109)
State unemployment rate		.069		1.310		.968
(percent unemployed)		(.505)		(.389)		(.794)
ln(state income per		.049	_	.084		098
capita)		(.213)		(.162)		(.465)
Poverty rate (percent		000	_	001	_	005

Evidence 4: Indicators of the selection effect

- Age-specific arrest rates negatively correlated with the effective abortion rate.
- Arrest rates measured per number of people below/above 25.

The relationship bw abortion and crime holds only for cohorts affected by abortion (under 25)

	ln (arrest per person, under age 25)		ln (arrests per person, age 25+)			
Specification	Violent crime	Property crime	Murder	Violent crime	Property crime	Murder
Effective abortion rate (\times						
included	095	085	214	.022	019	034
	(.029)	(.023)	(.051)	(.054)	(.037)	(.037)
Effective abortion rate (\times 100) including full set of						
covariates	044	054	180	.033	.008	036
	(.030)	(.023)	(.062)	(.046)	(.031)	(.050)

Evidence 5: The alleged hallmark

- Cohorts affected (cumulatively) more by abortions have fewer arrests
- Regressions at the state-year-age level
- Controlling for state, year, and state-year effects

 $\ln (ARRESTS_{stb}) = \beta_1 ABORT_{sb} + \gamma_s + \lambda_{tb} + \theta_{st} + \epsilon_{stb},$

• Further, controlling for state-age effects

Table 7: within a state, cohorts with higher abortion rate experience a decline in violent arrests

		ln (Viole	ent arrests)		
Abortion rate (\times 100)	015	_	028	_	
Abortion rate (\times 100) interacted with Age = 15		.018	(.004)	008	
Age = 16	_	(.008) .008 (.007)	_	(.010) 007 (.008)	
Age = 17	—	010	—	021	
Age = 18	—	035	—	039	
Age = 19	—	040 (.005)	—	043 (.007)	
Age = 20	—	043	—	043	
Age = 21	_	039 (.009)	—	039 (.008)	
Age = 22	—	028 (.013)	—	024 (.009)	
Age = 23	—	031 (.023)	_	026 (.013)	
Age = 24	_	027 (.040)	_	016 (.020)	
R ² Number of observations	.972 5,737	.972 5,737	.985 5,737	.985 5,737	
interactions?	State-fixed	State-fixed	State * Age interactions	State * Age interactions	\mathbf{s}

THE RELATIONSHIP BETWEEN ABORTION RATES AND ARREST RATES,

Economic significance

- Findings imply that as much as 50% of the large decline in crime during the 1990's is attributed to abortion
- Authors very careful with normative statements (but read Freakonomics for crude welfare analysis)

Follow-ups

- Foote, Ch. L. and Christopher Goetz (2005): Testing Economic Hypothesis with State-Level Data: A Comment on Donohue and Levitt (2001), Federal Reserve Bank of Boston working paper.
- Donohue, J. and Steve Levitt (2005): Measurement Error, Legalized Abortion, the Decline in Crime: A Response to Foote and Goetz, unpublished manuscript, 2005.
- Joyce, T.: Did Legalized Abortion Lower Crime? (2004) Journal of Human Resources.
- Donohue, J. and Steve Levitt (2004): Further Evidence That Legalized Abortion Lowered Crime: A Reply to Joyce, Journal of Human Resources.

Issues raised by Foote & Goetz

- No dispute about the (weaker) evidence 2-4.
- All the dispute is about Table 7
- 1. Donohue and Levitt used raw number of arrests, rather than arrests per capita (cohort size effect)
- 2. Programming error

Foote and Goetz (2005)

- Re-estimate without error
- Run the regressions on arrests per capita
- Emphasize the importance of state-year, state-age effects
 - Crack cocaine epidemic

Foote and Goetz (2005)

Table 1: Estimated Effects on (Log of) Violent Crime Arrests

		Add		Arrests on
	Original DL	State-Year	Add	Per Capita
	Specification	Controls	Population	Basis
No State-Age				
Controls				
Log of Abortion	0184**	.0017	.0263**	.0255**
Exposure	(.0030)	(.0050)	(.0053)	(.0048)
Log of Population			1.035^{**}	
			(.090)	
With State-Age				
Controls				
Log of Abortion	0271**	0094**	0032	0002
Exposure	(.0044)	(.0034)	(.0032)	(.0033)
Log of Population			0.670^{**}	
			(.080)	

Donohue and Levitt (2005) reply

- Acknowledge the error
- Counter-critique
 - Arrests are a proxy, population measured with error: cumulating measurement error
- Alternative dataset on the number of abortions
 - Use as instrument
- Sharpening the measurement error in abortions
 - Mobility to obtain abortion
 - Mobility after abortion
 - Assigning abortion year to year/age of arrest

Removing the measurement error

Estimated Effects of Abortion on Crime with and without Measurement Error Correction					
_		In (Violent arrests)			
Abortion measures:					
original	-0.018	-0.027	-0.009		
	[0.003]**	[0.004]**	[0.003]**		
with corrections	-0.045	-0.083	-0.046		
	[0.007]**	[0.008]**	[0.008]**		
IV using CDC	-0.045	-0.078	-0.055		
	[0.007]**	[0.010]**	[0.013]**		
Controls include:					
fixed effects for state					
and age*year	yes	yes	yes		
interactions					
state*age interactions	no	yes	yes		
state*year interactions	no	no	yes		

Table 4

Per capita regressions

	In (Violent arrests)	In (Violent arrests)	In (Violent arrests per capita)
Abortion measures:			
original	-0.009	-0.003	0.000
	[0.003]**	[0.003]	[0.003]
with corrections	-0.046	-0.031	-0.021
	[0.008]**	[0.008]**	[0.008]**
IV using CDC	-0.055	-0.037	-0.023
-	[0.013]**	[0.014]**	[0.013]
Controls include:			
fixed effects for state and			
age*year interactions	yes	yes	yes
state*age interactions	yes	yes	yes
state*year interactions	yes	yes	yes
In(population)	no	yes	no

 Table 5

 Distinguishing Between the Channels Through Which Abortion Affects Crime

Big conceptual issue

- The state-year, state-age etc effects may remove too much variation from the data
- These methods are asking ``too much'' of the available data
- After all, a highly crude natural experiment

Abortion in a different context

 Pop-Eleches, C. (2006). The Impact of an Abortion Ban on Socioeconomic Outcomes of Children: Evidence from Romania, *Journal of Political Economy*.

Monthly birth rates in Romania around the abortion ban

FIG. 2.—Monthly birth rates: vital statistics and representation in the 1992 census sample. The graph plots the number of persons born between 1966 and 1968 by month of birth. Month 0 refers to June 1967, the first month with large fertility increases due to the restrictive abortion policy. Also plotted are the number of persons born in the same period

TABLE 3							
Educational Achievements for Cohorts Born between January and Octob	ER						
1967							

Dependent Variable	Full Sample (1)	Restricted Sample (2)	Restricted Sample (3)	Restricted Sample (4)
Apprentice school:				
Treatment dummy	.00643*	.00199	.01960 ***	$.02134^{***}$
	(.00376)	(.00602)	(.00560)	(.00556)
Observed probability	.226	.232	.232	.232
High school or more:				
Treatment dummy	.03789 * * *	.04147 ***	00565	01713 **
	(.00449)	(.00713)	(.00795)	(.00816)
Observed probability	.46	.512	.512	.512
University or more:				
Treatment dummy	.00573 * *	.00611	01232^{***}	01470 ***
	(.00257)	(.00479)	(.00405)	(.00392)
Observed probability	.091	.132	.132	.132
Observations	55,337	22,847	22.847	22.847
Background controls	No	No	Yes	Yes
Household controls	No	No	No	Yes

NOTE.—The table presents the results of probit regressions. For continuous variables, the coefficient estimates represent the marginal effect of variables evaluated at their mean; for dummy variables, the coefficients capture the effect of switching the value from zero to one. The sample contains people born between January and October 1967. The dependent variables are three educational achievement dummies. The treatment dummy equals one for people born after June 1967, zero otherwise. The background controls included are two educational dummies of the mother, two educational dummies of the father, an urban dummy for place of birth of the child, a dummy for the sex of the child, and 46 region of birth dummies. The household controls are homeownership, rooms per occupant, surface area per occupant, and availability of a toilet, bath, kitchen, gas, sewerage, heating, and water. The full sample refers to all individuals in a given cohort included in the census sample. The restricted sample refers to those individuals in the coefficients in parentheses. Variables are threir parents at the time of the census. Robust standard errors are shown below the coefficients in parentheses. Variables are further defined in App. table A1.

Dependent Variable	Total Crime (1)	Crime against Persons (2)	Property Crime (3)	Other Crimes (4)
Dummy for birth:				
1967-69	116	095	.059	.001
	(.102)	(.065)	(.053)	(.056)
After 1970	.301**	.088	.232***	.221***
	(.124)	(.095)	(.081)	(.071)
Age dummies included	Yes	Yes	Yes	Yes
Time controls included	Year	Year	Year	Year
	dummies	dummies	dummies	dummies
Average crime rate for				
1967–69 cohort	.77	.36	.26	.28
Observations	550	550	550	550
R^2	.64	.52	.54	.48

TABLE 7 Crime Behavior in Sibiu, Romania

Abortion and crime: Who's right?

It is easy to be perplexed or mislead

- Empirical research is necessary for understanding the world but it is hard
- Theoretical hypothesis: X => Y
- Empirical research:
 - Many studies test one claim
 - Frequently opposing results
 - Bitter fights between academics
 - Publication bias
 - Selective interpretation by the media, lobbies, think-tanks, researchers with agendas etc.
- Is there a truth?

Some guidance

- Empirical research => evidence supporting or contradicting a hypothesis
- One paper is never enough to reject/accept a hypothesis!
- We never *"prove"* a theory with empirical research!
- Rather, we gradually accumulate evidence that eventually supports or rejects the hypothesis with a relatively large degree of confidence

Some guidance

- Never cherry-pick one study!
- Do not let your ideology or priors see the desired conclusions
- Findings based on obvious, exposed errors should be discarded
- Findings based on obviously wrong, inadequate, obsolete methodologies should be discarded
- Studies vary in quality more weight put on findings from high-quality studies

Hierarchy of methods (effects of interventions)

Randomized experiment

Natural experiment (IV, regression discontinuity, diff-in-diff)

Panel data

Time series or cross-section analysis

Graphs and descriptive statistics

Donohue (2016): Empirical Evaluation of Law: The Dream and the Nightmare

Hierarchy of methods (effects of interventions)

Randomized experiment

Natural experiment (IV, regression discontinuity, diff-in-diff)

Panel data

Time series or cross section analysis

Graphs and descriptive statistics

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Národohospodářská fakulta VŠE v Praze

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-sa/4.0/</u> or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.