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0. Mathematical basics

1) Mathematical basics:

A. Consumer theory

2) The budget constraint:

3) Consumer preferences:

4) Utility theory:

5) Choice:

6) Substitution and income effects:

7) "Duality'': maximizing utility or minimizing expenditure
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9) Decision making under risk: Chap 12
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B. Theory of the Firm
10) Technology: Chap 18

11) Profit maximizing: Chap 19

12) Cost minimizing: Chap 20, 21
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 Good news and bad news



Good news




Some more good news

« Abstraction and math give a deep understanding



« What use Is micro-economics for?



 Academic/ consultancy/ policy
report example
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Concentration Generators

Market share of the largest
generatorinthe electricity
marketin %

17.4-28.0

28.0-354

35.4-56.3

56.3-854
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M3

M4

12



M3 M4

Divestment:
R

has SAME aggregate

r assets as M3

Brandts et al.

_1 e

M4 has MORE aggregate
. assets than M3!
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M3

M2
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M3
AME aggregate
. ets as M3

_1 e

M2 has LESS aggregate
. assets than M3!

M2

15



Cms(@) =0
Cy3(a)>0forq>0&Cy,,(q)>0forq>0

How should look M., and M. ,?
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Cost function of a firm in a market
with 2 producers

Cost function of a firm in a market
with 3 producers

Cost function of a firm in a market
with 4 producers

C.(q)

Cs(q)

C.(q)

sz(q) =7?

Cy3(0) =0’

CM4(q) =7?
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« How to find the new cost functions?
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Market with
THREE
producers
(original market)

Total Total
Production Costs

3*q | 3*TC

0 12

9 217
12 48




Market with

Market with
THREE
TWO
producers
producers "

(original market)

Total Total Total Total
Production Costs Production Costs

o*q | 2*TCl 3*g |3*TC




Market with M?.ﬁlgtEV\lgth Maélée&g'th
TWO producers producers
producers (original market)
Total Total Total Total Total Total
Production Costs Production Costs Production Costs
oxq | 2*TCQ 3*q |3*TCQ 4*q | 4*TC
0 0 0 0 0
3 3
4 ? 4
0 12 0 12 0
8 ? 8
9 21
12 | 48 | 12 | 48 f 12




. Market with Market with
Market with THREE COUR
TWO producers producers
producers (original market)
Total Total Total Total Total Total
Production Costs Production Costs Production Costs
2%q |2*TCQl 3*q |3*TCQ 4*q | 4*TC

Adding competition by
Entry
(Brandts et al. 2008)

Entry: M4 has
more assets and
IS thus cheaper

Entry: M2 has
less assets and
is thus more
expensive




 How to find the new cost functions?
* For all values (not only multiplies of 12)

» Applying the basic theory of cost
minimization makes finding the solution
very easy
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Cost function of a firm in a market
with 2 producers

Cost function of a firm in a market
with 3 producers

Cost function of a firm in a market
with 4 producers

C.(q)

Cs(q)

C.(q)
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European Economic Review 64 (2013) 256-265

Contents lists available at ScienceDirect _~ E;é:ég%ﬁﬁ%
European Economic Review
journal homepage: www.elsevier.com/locate/eer Mm
Structural versus behavioral remedies in the deregulation @CmssMark

of electricity markets: An experimental investigation
motivated by policy concerns

Silvester van Koten *”* Andreas Ortmann €

2 Department of Institutional Economics, University of Economics, Prague, Czech Republic

> CERGE-EI, A joint workplace of Charles University and the Economics Institute of the Academy of Sciences of the Czech Republic,
Politickych veznu 7, 111 21 Prague, Czech Republic

¢ Australian School of Business, University of New South Wales, Sydney, Australia
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While increasing the stock of production assets may
have positive effects, the costs of creating these
assets can be considerable.

For example, building new power plants in the
electricity industry is very costly.

Introducing an equal-sized new competitor by entry in
a market with 3 symmetrical competitors requires an
Increase In production assets by 33%.

In a country such as the UK, an increase of that
magnitude would correspond to an increase Iin
electricity generation capacity of 27 GW and would
cost — depending on whether the increase is realized
by gas, coal or nuclear power plants — between 27
billion and 189 billon English pounds (Mott
MacDonald, 2010, p. 58; Ofgem, 2013, p. 10). ?0



* Policy example

27






* Alberta has set a “firm target” to obtain
30% of its electricity from renewable
sources by 2030

* ... Creating new, green jobs for Albertans

 To reach [this] target will require at least

$7.95bn in]fresh investment| That will
translate into at least 7,200 new jobs.

« Comment: Iif a policy creates jobs, Is that a
good thing?
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Academics: for any research you need
microeconomics

Consultancy: you should be able to read

and write reports that contain

microeconomcis

Policy: microeconomics to understand the

+/- of different proposals

— Eqg: if a policy creates jobs, is that a good
thing?

Business: need a basic understanding of
concepts of cost, profit, revenue.
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* Mathematics:
— Differentiation
— Solving equations
— Optimizing (maximizing & minimizing)

* We are lucky here — often assuming convex
problems

31



0. Mathematical basics: Varian Math.
Appendix & Nicholson chap.2

A. Consumer theory

B. Theory of the Firm

C. General equilibrium
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BASIC MATHEMATICS
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Differentiation



How can you find the gradient of a
curve If it keeps changing??

10 T

P o a s
Il 1 Il I Il I Il
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How can you find the gradient of a
curve If it keeps changing??
E.g. the functiony = x?2

y
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The ideal way to find a gradient of a curve
IS to find the gradient of the tangent at the
point we are interested In
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Finding the gradient

* The process of finding the gradient of a
curve is called “differentiation”

* You can differentiate any functionto find
Its gradient
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In general it can be shown that

f(x) = xn

\ The function
J -
f '(x) = nxn1
\ The derivative (or differential)

of the function.
This is the gradient function
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In other words-




In other words-

\




Constant rul-




Notation

y =f(x)

dy .



dy

Find —— for the following curves.

dx

3
y =4x

o



Test differentiating
polynomials

For any of the following questions there is exactly one correct answer.
Take a sheet of paper whenever you feel this might help.

The derivative of the

function x = x° is given by

X —> X°
X —> 2 X2
X—>2X

a
b
C

The derivative of the
function x = x° is given by

X—2x° a
X —> 3 %° b
X — X°/3 C

45



The derivative of the

function x >4 x*=3x+2
IS given by

X—>8x-3 a
X—>8X+2 b
X—>»8x°-3 C

The derivative of the
function x > 2x*=x*+1

IS given by

X—>2x>=2X
X—>6Xx°=2X
X—>6Xx-2Xx+1 C

o D

The derivative of the
function X > —-2x*+6 x —

4 is given by

X—>4X+6 d
X—>4x-4 b
X—>—=-4X+6 C

The derivative of the
function x > =7 x>+ 2 x* -

X+ 1 Is given by
X—>-14x°+4x-1 a
X—>=21x>+4x+1 b

X—>-21x°+4x—-1 C
46



The derivative of the function x = (x* = 3)° is
given by

X>4x'=12x°+6x-9 a
X —> (2 x = 3)° b
X —> 4 x> -12 x C
X —> 2 (X2 = 3) d
The graph of the The_ grgph of th_e
derivative of a quadratic derivative of a linear
function is function is
a parabola a a parabola a
a straight line b astraightline
. parallel to the x-axis
a point C

a straight line

parallel to the y-axis C



Test differentiating polynomials

For any of the following questions there is exactly one correct answer. Take a sheet of paper
whenever you feel this might help.

The derivative of the function x = x* The derivative of the function x — x°
is given by is given by
x> % a x—>2x a
X — 2% b xX—=>3x b
X=>2x c x— X3 C
The derivative of the The derivative of the function x — —
function x >4 x*=3x+2 is given by 2xX2+6x—4 is given by
Xx—>8x-3 a X—>4x+6 a
X—>8x+2 b X—>4x—4 b
Xx—>8x -3 c X—>—4x+6 c
The derivative of the The derivative of the function x = —
function x = 2x*=x%+1 is given by 7x3+2x*-x+1 is given by
X—>2x2-2x a X—>-14x+4x-1 a
X—>6x—2x b X—=>-21xX+4x+1 b
X—>6xX—2x+1 c X—=>-21x*+4x-1 c
The derivative of the function x = (x* = 3)? is given by
X—>4x' —12x°+6x-9 a
X = (2 x - 3)? b
X=>4x—12x c
Xx—=202-3) d

The graph of the derivative of a The graph of the derivative of a linear

quadratic function is function is
a parabola a a parapola .
a straight line b a straight line parallel to the x- b
astraightine >
. = axis 2
apoint ¢ a straight line parallel to the y-axis C 48



1.y — N GLARE:
XY1 / XYz — XY1 ,X—Y2 — )(yl_y2
(XY1)y2 — XY1'Y2

We want a function that has:

T[x-y]=T[x]+ Tyl
we cail it: IN[X] We also define: € = In‘l[l]

In[x-y]=In[x]+In[y]
In[x”] = In[(e'”[xl)y]z In[e"™-....e"M] =
=In[e"]+... + In[e"™]

=y-In[Xx] "



Uy — xNtY2
XY1 / XYz — XY1 ,X—Y2 — )(yl_y2

(XY1)y2 — XY1'Y2

We want a function that has:
| give a better

f[x-y]=f[x]+ fly] setup and

proofs next

We call it: In[X] We also define: € = In_l[l] week

In[x- y]=In[x]+In[y]
In[x’]=y-In[X]

In[x/y]=In[x-y " ]=In[x]+In[y '] =
= In[x]—In[y]
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A.9 Absolute Values and Logarithms

The absolute value of a number is a function f(z) defined by the following
rule:

B r ifx>0
f(I)_{—ﬂ: if z <O.

Thus the absolute value of a number can be found by dropping the sign of
the number. The absolute value function is usually written as |z]|.

The (natural) logarithm or log of z describes a particular function of
x, which we write as y = Inx or y = In(z). The logarithm function is the
unique function that has the properties

In(zy) = In(z) + In(y)
for all positive numbers x and y and
In(e) = 1.

(In this last equation, e is the base of natural logarithms which is equal to
2.7183...) In words, the log of the product of two numbers is the sum of
the individual logs. This property implies another important property of
logarithms:

In(z¥) = yln(z),

which says that the log of x raised to the power y is equal to y times the
log of .
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A.10 Derivatives

The derivative of a function y = f(x) is defined to be

H@) _ . fa+An) - f()
dx Az—0 Az '

In words, the derivative is the limit of the rate of change of y with respect
to x as the change in x goes to zero. The derivative gives precise meaning
to the phrase “the rate of change of y with respect to x for small changes
in z.” The derivative of f(x) with respect to x is also denoted by f'(x).

We have already seen that the rate of change of a linear function y =
ax + b is constant. Thus for this linear function

df(x) _
dxr
For a nonlinear function the rate of change of y with respect to = will
usually depend on z. We saw that in the case of f(z) = 22, we had
Ay/Ax = 2z + Ax. Applying the definition of the derivative
df (x)

——~ = lim 2z + Az = 2z.
dx Az—0

Thus the derivative of 2?2 with respect to z is 2z.
It can be shown by more advanced methods that if y = Inx, then

df(z) 1
de  x




A.11 Second Derivatives

The second derivative of a function is the derivative of the derivative of
that function. If y = f(x), the second derivative of f(z) with respect to x
is written as d?f(z)/dz? or f”(z). We know that

d(2x)
=2
dx
d(z?)
= 2.
dx o
Thus
d*(2x) - d(2) _0
drz2  dz
d2($2) B d(2x) _9
dz2  dx

The second derivative measures the curvature of a function. A function
with a negative second derivative at some point is concave near that point;
its slope is decreasing. A function with a positive second derivative at a
point is convex near that point; its slope is increasing. A function with a
zero second derivative at a point is flat near that point.

53



Multiplication (product rule)

dh[x]

+ T[x]:

d (f[x]-h[x]) _ X df [x]
dx dx

Composite functions (Chain rule)

df [h[x]] _df [h[x]] ~dh[x]
dx  dh dx

Division = multiplication + chain rule .
d(fpx1/nx) _ 9(FDX-(DX)7) g G g A

dx dx o dx dx

- TP g (np) * A
nix]- S - g

dx
(h[X]) 54




A.12 The Product Rule and the Chain Rule

Suppose that g(z) and h(z) are both functions of x. We can define the
function f(z) that represents their product by f(x) = g(x)h(x). Then the
derivative of f(x) is given by

df ()
dx

dh(x)
dx

dg(z)

+ h(z) .

= g(z)

Given two functions y = g(x) and z = h(y), the composite function is

For example, if g(x) = 2 and h(y) = 2y + 3, then the composite function
1S
f(z) = 22° + 3.

The chain rule says that the derivative of a composite function, f(z),
with respect to x is given by

df(z) _ dh(y) dg(x)
dx dy dr

In our example, dh(y)/dy = 2, and dg(x)/dz = 2z, so the chain rule says
that df (z)/dx = 2 x 2x = 4x. Direct calculation verifies that this is the
derivative of the function f(z) = 222 + 3.
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Exercises




 Partial derivates

 Total derivates

57



A.13 Partial Derivatives

Suppose that y depends on both x; and x3, so that y = f(x1,22). Then
the partial derivative of f(x1,z2) with respect to z; is defined by

6f($13$2) — lim f(iEl + A$15$2) - f($1>$2)
855‘1 Axi1—0 ALEl .

The partial derivative of f(z1,x2) with respect to x; is just the derivative
of the function with respect to z1, holding x> fired. Similarly, the partial
derivative with respect to xs is

Of (w1, m2) i f(x1, 2 + Azg) — f(x1,72)
Ory  Aza—0 Az '

Partial derivatives have exactly the same properties as ordinary derivatives;
only the name has been changed to protect the innocent (that is, people
who haven’t seen the 0 symbol).

58



In particular, partial derivatives obey the chain rule, but with an extra
twist. Suppose that x; and x5 both depend on some variable ¢ and that
we define the function g(¢) by

g(t) = fx1(t), 22(t)).
Then the derivative of g(t) with respect to t is given by
dg(t) _ Of(x1,x2) dxy(t) N Of (x1,x2) dza(t)
dt 0x1 dt 0x2 dt

When t changes, it affects both x;(t) and z2(t). Therefore, we need to
calculate the derivative of f(x1,x2) with respect to each of those changes.

59



Exercises

fx,y]=x+Inly] || fIxy.2]=2"xy +In[y —x]

of [ X, y]:1

oy

60



Exercises

y = g(Xx)

FDOYI=X4Y" g 00) = x+ g (x)°

orlxyl_,

=1+2g(x)-9'(x)

df (x,9(x))
dx

61



Exercises

y = g(x) =In[x] f(x,y)=f(xIn[x])

TS0y i | =X I

=142 | [AEY) g oL
OX X

2In[x
X

=1+




A.14 Optimization

If y = f(x), then f(x) achieves a maximum at z* if f(z*) > f(x) for
all . It can be shown that if f(x) is a smooth function that achieves its
maximum value at x*, then

df(z*)
dx =0
2 *
L <o

These expressions are referred to as the first-order condition and the
second-order condition for a maximum. The first-order condition says
that the function is flat at z*, while the second-order condition says that
the function is concave near x*. Clearly both of these properties have to
hold if #* is indeed a maximum.

We say that f(z) achieves its minimum value at z* if f(z*) < f(z) for
all z. If f(x) is a smooth function that achieves its minimum at z*, then

df (z*) _
de ¥
2 %

The first-order condition again says that the function is flat at x*, while
the second-order condition now says that the function is convex near z*.
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If y = f(z1,72) is a smooth function that achieves its maximum or
minimum at some point (z7,z3), then we must satisfy

Of (27, 73)

8$1 =0
of (ah.a3) _
82?2 .

These are referred to as the first-order conditions. There are also second-
order conditions for this problem, but they are more difficult to describe.
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Exercises

Max f (x) =(1— X)X

0= dfd(x) =-1-X+(1-X)=1-2X<«<>x=1/2
X

d?f(x) _

dx? -

65



Exercises

Not a
maximum, but a
minimum!

66



Exercises

Not a
maximum!
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INTERMEDIATE
MATHEMATICS

68



A.15 Constrained Optimization

Often we want to consider the maximum or minimum of some function over
some restricted values of (x1,x2). The notation

max f(zq,2)
I1,T2

such that g(x1,z2) = c.

mearns

find ] and x3 such that f(z],z3) > f(x1,z2) for all values of r; and x4
that satisfy the equation g(z1,z2) = c.

The function f(z1,x2) is called the objective function, and the equa-
tion g(x1,z2) = c is called the constraint. Methods for solving this kind

of constrained maximization problem are described in the Appendix to
Chapter 5.

69



 Lagrange

70



y: f[xl’XZ] g[Xl’XZ]:O
max, . T[x,x], st g[x,x,]=0

L= T[x,%]+4-9[x,X,]

FOC :

0
0

é)I_ I
1

What if we have more restrictions?

71



y = f[X11X2] Y1 : gi[Xl’Xz] =X
max, . fIx,x], st Vi:g]x,x]=0

L= T[x,X,] 221 -0i[%, X ]

FOC :
[, =0
L, =0

L, =L, =L, =0
Are we sure that the restriction binds?

Otherwise we need: Karush-Kuhn-Tucker conditions
(KKT conditions) 2



 Examples

73



Maxy=Xx+X,  0,[%,%]=15-X
9,[%, X, ] =25-X,

L=X+X,+4,-(15-X)+1,-(25-X,)

=L, =15-X, X, =15
=L, =25-X, X, =25 )



MAX:y=X "X,
gl[X11X2]:100_(X1+X2)
L:xl-x + 4, -(100— (X, +X,))

O Ll_x—
0= Lz_x—ﬂi}
0=L, =100 (X, +X,)

H_/

2% —-100=0 x, =x,=50

2
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« Karash-Kuhn-Tucker

76



« Same problem, but we are just not
completely sure g[x] will bind

77



max, . T[x,x], st g[x,X]<0

L=1 [Xl’ Xz] +4- g[X1’ Xz]
FOC:

/8



 Example

79



MAX:y =X, -X,
g,[%, %,]= (% +X,)—100<0

L =X %, +4-((% +X,)—100)
FOC :

O=L1=(X2—ﬂl) } X, =4 =X
0=L,=(%-4)
0=2-L, =4 -((x%+x,)—100)
—

not the maximum



MAX:y =X, -X,
g,[%, %,]= (% +X,)—100<0

L =X %, +4-((% +X,)—100)
FOC :

O=L1=(X2—ﬂl) } X, =4 =X
0=L,=(%~4)

0=4-L, =4 - ((x, +X,) —100)
—_—

2X1—1OO:O X, = X, =50



* Lets now look at non-negativity constraints
in a slightly different problem

« Suppose we know that g[x] binds

* We just are worried that our x1, X2 might
take negative values!

82



max, . T[x,x], st g[x,x,]=0
X, 20,X,20

L= T[x,%]+4-9[x,X,]

FOC:
- L=0,x,20,L, =0
X,-L,=0,X,20,L, =0

L, =0

83



max, . T[x,x], st g[x,x,]=0
X, 20,X,20

L= T[x,%]+4-9[x,X,]

FOC :
Xl . Ll O X 2 O Ll < O :a(r:rcc))rrr!e(cfe\/sirstne)
X,-L,=0,X,20,L, <0 L, >0,L,>0

84



 Example

85



MIN:y =X, - X,
g,[x,%,]= (X, +x,)—100=0
X, 20,x, =20

L:X1°X2+ﬂ1°((xl+xz)_100)
FOC
O:X1.L1:X1.(X2_ﬂl)}
O=X2-L2:X2-(X1—21)
0=L, =(x +X,)—100
%/_/
2%, —100=0 X =X,=950 |y =2500:

Ifx, >0&x,>0

Xzzﬂlle




 This maximizes the function!

« We need here to check the 2nd order
condition

_0(%—4) _

L, = ox. =1>0
_ a(xl_;ll) _

L, = x =1>0

* Yep, the solution we found Is the maximum
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MIN:y =X, - X,
g,[x,%,]= (X, +x,)—100=0
X, 20,x, =20

L =X - %, + 4, - ((X, +X,) —100)
FOC : .
fx,=0&X%,>0
o=x1-g=x1-<x2—a>}'xxl_zl>o a
2
O:XZ.L2:X2.(X1_21)
0=L, =x +Xx,-100
%_/
X,—100=0 x, =0&Xx,=100 |y =0«

X, =4 =>4,=0




MIN:y =X, - X,
g,[x,%,]= (X, +x,)—100=0

X, 20,x, =20
L:X1°X2+ﬂ1°((xl+xz)_100)
FOC: IfX,=0&Xx, >0

o=yn-L1=x1-<x2—m} o = Iy = =0
O:XZ.L2:X2.(X1_21)
O0=L, =x +X,—-100
%/_/

X,—100=0 x,=100&x,=0 [y=0fe

X, — A, >0




« Example minimizing costs

90



C=W,- X +W, X, g(X, X,)=X+X, =Y

L=wW,-X, +W, - X, + A4 - (X, +X, — Y)

FOC :

O=x-L=x-(W+4) x=>0L>0
0=x,-L, =X, (W "'21) X, >20,L, =0
O:Lﬂl:x1+x2—y

91



O:X1°L1:X1 (Wl_l_ﬂl) 0=L
0=x,-L, =%, -(W,+4,) &
case 1: X, >0&x, >0

case 2: X, =0&x, >0

(W, +4,)>0
(Wz+ﬂl)20 <SS W, > W,
case 3: X, >0&x, =0
(W, +4)>0
S W, > W,

(w,+4)=0

92



0=x-Li=x-(W+4) o | _ .
O:XZ-LZ:XZ-(W2+J1) O=L, =x+X-Y

case 4: X, =0& x, =0

93



 Read N (Nicholson, Microeconomic
Theory), p. 20-29, 38-46

* We will use the above methods many
times

« Some more wild parts: envelope theorem
(we leave this for later)
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 A. Consumer theory
« 2. The budget constraint: Chap 2
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The Consumer’s Budget Constraint

Budget Costof Cola | Costof Pizza
1000 $2 $10
Pints Number Spending Spending Total
of | cola® of Pizzas on Pepsi on Pizza Spending
0 100 $ 0 $1,000 $1,000
50 90 100 900 1,000
100 80 200 800 1,000
150 70 300 700 1,000
200 60 400 600 1,000
250 50 500 500 1,000
300 40 600 400 1,000
350 30 700 300 1,000
400 20 800 200 1,000
450 10 900 100 1,000

500 0 1,000 0 1,000
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The Consumer’s Budget Constraint

Quantity Budget Price of Cola | Price of Pizza
of Cola 1000 $2 $10
500 B

« Extra cost of $10
« Give up cola for $10

» Give up 5 units of cola!

Slope = -5

Slope gives the units of cola you

250 need to give up for 1 more pizza

Consumer’s S| T bud —
budget constraint ope of budget constraint is
called:

“the Marginal Rate of

i A Transformation” (MRT)

0 50 100 Quantity
of Pizza
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¢ Q2+ Qp*10=1000

¢ Q:2=1000- Q*10

* Q:-=(1000- Qx*10)/2

* Q-=1000/2- (10/2)* Qp
* Qc=500-5"Qp
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Budget | Cost of Cola | Cost of Pizza

1000 $2 $10
M=1000 | P.=2 P.=10
Quantity Slopeis -5
— _ * of Cola
QC M/PC (PP/PC) QP =the relative
price

Qc = 1000/2 — (10/2)*

Qe = 500@Qp

=price of pizza
relative to cola

250 :
Consumer’s
budget constraint
i
o) 50 100 Quantity

of Pizza
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The Consumer’s Budget Constraint

Quantity
of Cola

500

250

Budget

Price of Cola

Price of Pizza

1000

$2

$10

*Qc =900 5" Qp

Consumer’s
budget constraint

Quantity
of Pizza

100



The Consumer’s Budget Constraint

Quantity
of Cola

500

250

Budget

Price of Cola

Price of Pizza

1000

$2

$10

*Qc =500 - 5* Qp

Consumer’s
budget constraint

Quantity
of Pizza

101



The Consumer’s Budget Constraint

Quantity
of Cola

500

250

The price of pizza doubles!

Budget Price of Cola | Price of Pizza

1000 $2 $20

Qc =500 -5*Qp

I/

Qc = 500 — 10* Qp

Consumer’s
budget constraint MRT= .10

50

Quantity
of Pizza
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The Consumer’s Budget Constraint

Quantity
of Cola

500

250

The price of pizza halves!

Budget

Price of Cola | Price of Pizza

1000

$2

$5

200

Qc =500 -5*Qp

Qc =500 - 2% * Qp

Quantity
of Pizza
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The Consumer’s Budget Constraint

. The price of cola doubles!
Quantity

of Cola

Budget Price of Cola | Price of Pizza
1000 $4 $10

~

Qe =500 — 2% * Qp

500

250

Consumer’s
budget constraint MRT= .21,

Quantity

0 50 100
200 of Pizza 104



The Consumer’s Budget Constraint

The price of cola halves!

Quantity
of Cola
Budget Price of Cola | Price of Pizza
500 1000 $1 $10

Qc =500 -5*Qp

. o0 -500- 1070
: Consumer’s
-

uantit
0 50 100 200 N . y
of Pizza
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The Consumer’s Budget Constraint

-
Quantity

of Cola

Budget Price of Cola | Price of Pizza

500

$500 $2 $10

N\

Qc=250-5*Qp
Consumer’s
budget constraint MRT= .5

Quantity

250

0 100
200 of Pizza
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The Consumer’s Budget Constraint

Your income doubles!

Quantity

of Cola

Budget Price of Cola | Price of Pizza

500 $2000 $2 $10

N

o0 [ o= 1000-5" 0.

Consiimer’s

MRT= -10

Quantity

0 50 100
200 of Pizza 107



How to find the slope of the budget

restriction In the product space
1. Write down the budget restriction as
M=pl * X1 + p2 * x2
2. Isolate x2
P2* Xx2=M- p1* x1
X2=(M-p1* x1)/p2
X2=M/p2 — (pl/p2) x1
3. Differentiate x2 to x1
dx2/dx1=-(pl/p2)
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P1T1 + P22 =M

and
p1(z1 + Azy) + pa(z2 + Azs) = m.

Subtracting the first equation from the second gives
p1Axy + poAzs = 0.

This says that the total value of the change in her consumption must be
zero. Solving for Azs/Axy, the rate at which good 2 can be substituted
for good 1 while still satisfying the budget constraint, gives

Axo N

Az, P2 .
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We look back on this method after talking about total differentiation

Budget restriction

4 ti
M =B(X,Y)
M = B(X, y(x))
b
\
\D
3
Slope:TRS\ AR q=14
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Derivation method 1; —
implicit function derivation M = B(X, Y(X))

Budget restriction

y

dM _ dB( X, y(x))

dx dx
0 SB(x, y(x)) N SB(x,y(x)) dy
O X oy dx
SM(X,y)
TRs =), s
L dx (X,y)=M SM(X,y)
\\ 5y
\b\-n
Slope=TRS \s
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2.5 The Numeraire

The budget line is defined by two prices and one income, but one of these
variables is redundant. We could peg one of the prices, or the income, to

some fixed value, and adjust the other variables so as to describe exactly
the same budget set. Thus the budget line

P1T1 + P2y = M

is exactly the same budget line as

T
p—l.?}l + Tro = —
P2 P2
or
Iiml + IEﬂ-r:2 — 11
T m

112



e EXercises
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REVIEW QUESTIONS V (Varian)

1. Originally the consumer faces the budget line p;xX; + poX, = m.

Then
— the price of good 1 doubles
— the price of good 2 becomes 8 times larger
— Income becomes 4 times larger.

Write down an equation for the new budget line in terms of the
original prices and income.

2.1. The new budget line is given by 2pix1 + 8poxs = 4m.

2. What happens to the budget line if the price of good 2 increases, but
the price of good 1 and income remain constant?

2.2. The vertical intercept (xo axis) decreases and the horizontal intercept
(z1 axis) stays the same. Thus the budget line becomes flatter.
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REVIEW QUESTIONS V (Varian)

3. If the price of good 1 doubles and the price of good 2
triples, does the budget line become flatter or steeper?

2.3. Flatter. The slope is —2p; /3ps.

5. Suppose that the government puts a tax of 15 cents a
gallon on gasoline and then later decides to put a
subsidy on gasoline at a rate of 7 cents a gallon. What
net tax Is this combination equivalent to?

2.5. A tax of 8 cents a gallon.
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REVIEW QUESTIONS V (Varian)

6. Suppose that a budget equation is given by p;x;+ p.X,
=m.
The government decides to impose:
— alump-sumtax of u
— a quantity tax on good 1 of t
— a gquantity subsidy on good 2 of s.

What is the formula for the new budget line?

2.6. (p1 +t)x1 + (p2 — 8)x2 = M — .

7. If the income of the consumer increases and one of the
prices decreases at the same time, will the consumer
necessarily be at least as well-off?

2.7. Yes, since all of the bundles the consumer could afford before are
affordable at the new prices and income.
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Consider a version of the consumer problem in which
1

quasilinear utility m% + %3}2 Is maximised subject to
r1+xo = 1.
1
L= x1'5+Zx2 +A- (1= (% +X,))

B} 1Y
O=L =.5x"-4 @xlz(ﬂj
1 1
O=L,=—-4 S A== Thus then x, =4
4 4
O=L, =1-(X+X,) Thus then x, =1—-x, =-3

In a consumer problem, negative quantities are not possible
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Consider a version of the consumer problem in which
1

quasilinear utility m% + %3}2 Is maximised subject to
r1+xo = 1.
1
L= x1'5+Zx2 +A- (1= (% +X,))

2
0=x,-L = xl.(.5.xl"5—ﬂ)<:> X, :(ij :(22,)_2 orx, =0

1
O=X2-L2:X2-(Z—ij <:>/1:10rX2:O
O=L, =1-(X +X,)

Suppose x, =0,%x, >0: Thenx, =1, L:%

Worrysome is that .5x,”* is infinitely large and >0 when x, =0

Suppose x, >0,x,=0: Thenx, =1, L=1
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« REVIEW QUESTIONS N (Nicholson)

2.7

Consider the following constrained maximization problem:

maximize y=x; +5Ilnx,
subject to k2 —x —x, =0,

where % is a constant that can be assigned any specific value.
a. Show that if 2 = 10, this problem can be solved as one involving only equality constraints.
b. Show that solving this problem for k = 4 requires that x;, = —1.
c. If the »’s in this problem must be nonnegative, what is the optimal solution when %2 = 4?

d. What is the solution for this problem when %2 = 20? What do you conclude by comparing this
solution to the solution for part (a)?

Note: This problem involves what is called a “quasi-linear function.” Such functions provide important
examples of some types of behavior in consumer theory—as we shall see.
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