Microeconomics

EVROPSKÁ UNIE
Evropské strukturální a investiční fondy
Operační program Výzkum, vývoj a vzdělávání

Lecture 4\&5

Silvester van Koten

- The presentation is based on the following sources:
- Snyder Christopher M Walter Nicholson and Robert Stewart. 2015. Microeconomic Theory : Basic Principles and Extensions EMEA ed.

Andover: Cengage Learning. \dagger

- Varian Hal R. 2020. Intermediate Microeconomics : A Modern Approach Ninth ed. New York: W.W. Norton \& Company. +
- Excerpts from Gravelle H O Hart and R Rees. 2004. Advanced Microeconomics.

Consumer choice Chap. 5

Consumer Choice

Consumer Choice

Kinky tastes. Here is an optimal consumption bundle where the indifference curve doesn't have a tangent.

Boundary optimum. The optimal consumption involves consuming zero units of good 2. The indifference curve is not tangent to the budget line.

For the moment:
-Rule out "kinky tastes"
-Rule out corner solutions \& focus on interior solutions

Generally:

- Assume convex preferences

If we are willing to rule out "kinky tastes" we can forget about the example given in Figure 5.2. ${ }^{1}$ And if we are willing to restrict ourselves only to interior optima, we can rule out the other example. If we have an interior optimum with smooth indifference curves, the slope of the indifference curve and the slope of the budget line must be the same ... because if they were different the indifference curve would cross the budget line, and we couldn't be at the optimal point.

Consumer Choice

Expenditure Budget

- $\overbrace{Q_{C}{ }^{*} P_{C}+Q_{P}{ }^{*} P_{P}=}$
- $Q_{C}{ }^{*} P_{C}=M-Q_{P}{ }^{*} P_{P}$
- $Q_{C}=\left(M-Q_{P}{ }^{*} P_{P}\right) / P_{C}$
- $Q_{C}=M / P_{C}-\left(P_{P} / P_{C}\right)^{*} Q_{P}$
$M R T=\frac{\Delta Q_{C}}{\Delta Q_{P}}=-\frac{P_{P}}{P_{C}}$

Consumer Choice

Consumer Choice

$$
\frac{Q_{C}}{Q_{P}}=\frac{1}{5} \Leftrightarrow Q_{P}=5 Q_{C}
$$

$$
2\left(Q_{P}\right)+10 Q_{C}=360 \Leftrightarrow 2\left(5 Q_{C}\right)+10 Q_{C}=360
$$

$$
10 Q_{C}+10 Q_{C}=360
$$

$\Leftrightarrow 20 Q_{C}=360$
$\Leftrightarrow Q_{C}=\frac{360}{20}=18$
$\Leftrightarrow Q_{P}=5 \cdot 18=90$

Chap 5: Appendix
$p_{1} x_{1}+p_{2} x_{2}=m$.

$$
\max _{x_{1}, x_{2}} u\left(x_{1}, x_{2}\right)
$$

such that $p_{1} x_{1}+p_{2} x_{2}=m$.

$$
\begin{aligned}
& x_{2}\left(x_{1}\right)=\frac{m}{p_{2}}-\frac{p_{1}}{p_{2}} x_{1} \longrightarrow \frac{d x_{2}}{d x_{1}}=-\frac{p_{1}}{p_{2}} \\
& \max _{x_{1}} u\left(x_{1}, m / p_{2}-\left(p_{1} / p_{2}\right) x_{1}\right) \\
& \frac{\partial u\left(x_{1}, x_{2}\left(x_{1}\right)\right)}{\partial x_{1}}+\frac{\partial u\left(x_{1}, x_{2}\left(x_{1}\right)\right)}{\partial x_{2}} \frac{d x_{2}}{d x_{1}}=0
\end{aligned}
$$

Chap 5: Appendix

$$
\begin{aligned}
\frac{\partial u\left(x_{1}, x_{2}\left(x_{1}\right)\right)}{\partial x_{1}}+\frac{\partial u\left(x_{1}, x_{2}\left(x_{1}\right)\right)}{\partial x_{2}} \frac{d x_{2}}{d x_{1}} & =0 \quad \frac{d x_{2}}{d x_{1}}=-\frac{p_{1}}{p_{2}} \\
\frac{\partial u\left(x_{1}^{*}, x_{2}^{*}\right) / \partial x_{1}}{\partial u\left(x_{1}^{*}, x_{2}^{*}\right) / \partial x_{2}} & =\frac{p_{1}}{p_{2}}
\end{aligned}
$$

which just says that the marginal rate of substitution between x_{1} and x_{2} must equal the price ratio at the optimal choice $\left(x_{1}^{*}, x_{2}^{*}\right)$. This is exactly the condition

$$
u\left(x_{1}, x_{2}\right) \quad p_{1} x_{1}+p_{2} x_{2}-m=0
$$

Use Lagrange

$$
\begin{gathered}
L=u\left(x_{1}, x_{2}\right)-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right) \\
\frac{\partial L}{\partial x_{1}}=\frac{\partial u\left(x_{1}^{*}, x_{2}^{*}\right)}{\partial x_{1}}-\lambda p_{1}=0 \\
\frac{\partial L}{\partial x_{2}}=\frac{\partial u\left(x_{1}^{*}, x_{2}^{*}\right)}{\partial x_{2}}-\lambda p_{2}=0 \\
\frac{\partial L}{\partial \lambda}=p_{1} x_{1}^{*}+p_{2} x_{2}^{*}-m=0 . \\
\frac{\partial u\left(x_{1}^{*}, x_{2}^{*}\right) / \partial x_{1}}{\partial u\left(x_{1}^{*}, x_{2}^{*}\right) / \partial x_{2}}=\frac{p_{1}}{p_{2}}
\end{gathered}
$$

$$
\begin{aligned}
& u\left(x_{1}, x_{2}\right)=x_{1}^{c} x_{2}^{d} . \\
& \ln u\left(x_{1}, x_{2}\right)=c \ln x_{1}+d \ln x_{2}
\end{aligned}
$$

The maximization problem becomes:

$$
\max _{x_{1}, x_{2}} c \ln x_{1}+d \ln x_{2}
$$

such that $p_{1} x_{1}+p_{2} x_{2}=m$

Set up the Lagrangian

Now for Lagrange's method. Set up the Lagrangian

$$
L=c \ln x_{1}+d \ln x_{2}-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-m\right)
$$

$$
c=\lambda p_{1} x_{1}
$$

$$
d=\lambda p_{2} x_{2}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=\frac{c}{x_{1}}-\lambda p_{1}=0 \\
& \frac{\partial L}{\partial x_{2}}=\frac{d}{x_{2}}-\lambda p_{2}=0 \\
& \frac{\partial L}{\partial \lambda}=p_{1} x_{1}+p_{2} x_{2}-m=0 . \\
& \lambda p_{1} x_{1} \\
& \lambda p_{2} x_{2} .
\end{aligned} \quad c+d=\lambda\left(p_{1} x_{1}+p_{2} x_{2}\right)=\lambda m \text {. }
$$

$$
\lambda=\frac{c+d}{m}
$$

$$
\lambda=\frac{c+d}{m}
$$

$$
\begin{aligned}
& c=\lambda p_{1} x_{1} \\
& d=\lambda p_{2} x_{2} .
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\frac{c}{c+d} \frac{m}{p_{1}} \\
& x_{2}=\frac{d}{c+d} \frac{m}{p_{2}}
\end{aligned}
$$

The second way is to substitute the budget constraint into the maximization problem at the beginning. If we do this, our problem becomes

$\max c \ln x_{1}+d \ln \left(m / p_{2}-x_{1} p_{1} / p_{2}\right)$

x_{1}

$$
\frac{c}{x_{1}}-d \frac{p_{2}}{m-p_{1} x_{1}} \frac{p_{1}}{p_{2}}=0
$$

$$
\begin{aligned}
& x_{1}=\frac{c}{c+d} \frac{m}{p_{1}} \\
& x_{2}=m / p_{2}-x_{1} p_{1} / p_{2}
\end{aligned}
$$

$$
x_{2}=\frac{d}{c+d} \frac{m}{p_{2}}
$$

$$
\frac{M U_{p}}{M U_{c}}=\frac{P_{P}}{P_{C}}
$$

Equilibrium

Slope indifference curve STEEPER than
Slope budget line

Consumer Choice

$$
\frac{M U_{p}}{M U_{c}}=\frac{P_{P}}{P_{C}}
$$

Equilibrium

What if $\frac{M U_{p}}{M U_{c}}<\frac{P_{P}}{P_{C}}$?
What if $-\frac{M U_{p}}{M U_{c}}>-\frac{P_{P}}{P_{C}}$?
Slope indifference curve SHALLOWER than
Slope budget line

Consumer Choice

$\frac{M U_{p}}{M U_{c}}>\frac{P_{P}}{P_{C}} ?$
\longrightarrow More Pizza, less Cola!
$\frac{M U_{p}}{M U_{c}}<\frac{P_{P}}{P_{C}} ?$
\longrightarrow More Cola, less Pizza!

$$
\frac{M U_{p}}{M U_{c}}=\frac{P_{P}}{P_{C}} ?
$$

Consumer Choice

- Imagine that Pizza and Cola are equally expensive, so $P_{P}=P_{C}$
- Also adding one more unit:
- of Pizza increases utility with 2
- of Cola increases utility with 1
- You can change your consumption:
- Exchanging Cola for Pizza: so more Pizza, less Cola
- Exchanging Pizza for Cola: so more Cola, less Pizza
- What do you choose?
- Exchanging Cola for Pizza: so more Pizza, less Cola! In formulas:

$$
\begin{aligned}
\frac{P_{P}}{P_{C}}=\frac{1}{1}=1 \quad \frac{M U_{p}}{M U_{c}}=\frac{2}{1}=2 \frac{M U_{p}}{M U_{c}}>\frac{P_{P}}{P_{C}} \\
\frac{M U_{p}}{P_{P}}>\frac{M U_{c}}{P_{C}}
\end{aligned}
$$

Adding more pizza gives $2 x$ more pleasure than adding more cola and adding more pizza cost the same as adding more cola

Adding more ipiza gives $2 \times$ more pleasure percost than adding more cola

Our diagram analysis: $\quad \frac{M U_{p}}{M U_{c}}>\frac{P_{P}}{P_{C}} ? \rightarrow$ More Pizza, less Cola!

- Pizza cost \$4
- Cola cost \$1
- Also adding one more unit:
- of Pizza increases utility with 1
- of Cola increases utility with 1
- You can change your consumption:
- Exchanging Cola for Pizza: so more Pizza, Iess Cola
- Exchanging Pizza for Cola: so more Cola, less Pizza
- What do you choose?
- Exchanging Pizza for Cola: so more Cola, less Pizza! In formulas:

$$
\begin{aligned}
& \frac{P_{P}}{P_{C}}=\frac{4}{1}=4 \quad \frac{M U_{p}}{M U_{c}}=\frac{1}{1}=1 \frac{M U_{p}}{M U_{c}}<\frac{P_{P}}{P_{C}} \\
& \frac{M U_{p}}{P_{P}}<\frac{M U_{c}}{P_{C}} \\
& \text { aldad } \\
& \text { and } \\
& \text { sam } \\
& \hline
\end{aligned}
$$

Our diagram analysis: $\quad \frac{M U_{p}}{M U_{c}}<\frac{P_{P}}{P_{C}}$?
\rightarrow More Cola, less Pizza!

- Imagine that
- Pizza cost \$4
- Cola cost \$1
- Also:
- adding one more unit of Pizza increases utility with 3
- adding one more unit of Cola increases utility with 1
- You can change your consumption:
- Exchanging Cola for Pizza: so more Pizza, less Cola
- Exchanging Pizza for Cola: so more Cola, less Pizza
- What do you choose?
- Exchanging Pizza for Cola: so more Cola, less Pizza!

$$
\frac{M U_{p}}{M U_{c}}=\frac{3}{1}=3 \quad \frac{P_{P}}{P_{C}}=\frac{4}{1}=4 \quad \frac{M U_{p}}{M U_{c}}<\frac{P_{P}}{P_{C}}
$$

What if $\frac{M U_{p}}{M U_{c}}<\frac{P_{P}}{P_{C}} ? \rightarrow \begin{aligned} & \text { More Cola, less } \\ & \text { Pizza! }\end{aligned}$

- Perfect substitutes

Consumer Choice

Quantity
of Pizza

- Perfect complements

Cqnsumer Choice

| | 50 | 100 | 200 |
| :--- | :--- | :--- | :--- | | Quantity |
| :--- |
| of Pizza |

Consumer Choice

Cqnsumer Choice

- Unusual preferences

Cola is a "bad" good

$$
x_{1}=\frac{m}{p_{1}}
$$

Quantity
of Cola x1

$$
x_{2}=0
$$

Wanda's utility function is $\mathrm{U}(\mathrm{x}, \mathrm{y})=\mathrm{x}+63 \mathrm{y}-3 \mathrm{y}^{2}$.

- Her income is 184 ,
- the price of x is 1
- the price of y is 33 .

How many units of good y will Wanda demand?

MRT three methods: "intuitive", "algebraic", and "mathematic"

1. Intuitive:

- One more x costs $\$ 1\left(P_{x}\right)$
- By how much should Wanda reduce her consumption of y to save $\$ 1$?
- $1 / 33$ ($1 / \mathrm{P}_{\mathrm{y}}$)
- Thus MRT $=-1 / 33\left(P_{x} / P_{y}\right)$

2. Algebraic :

- $1^{*} x+33^{*} y=184$
- $\mathrm{y}=(184 / 33)-(1 / 33) \times$ MRT $=\frac{\mathbf{- 1}}{\mathbf{3 3}}$
3.Mathematic: $\boldsymbol{M R T}=\left.\frac{d y}{d x}\right|_{\bar{M}}=-\frac{\frac{\delta B}{\delta x}}{\frac{\delta B}{\delta y}}=-\frac{\boldsymbol{P}_{x}}{\boldsymbol{P}_{y}}=-\frac{\mathbf{1}}{\mathbf{3 3}} \quad$ Why is this true?

Budget restriction

 implicit function derivation $\bar{M} \equiv B(x, y(x))$

Wanda's utility function is $\mathrm{U}(\mathrm{x}, \mathrm{y})=\mathrm{x}+63 \mathrm{y}-3 \mathrm{y}^{2}$.

- Her income is 184 ,
- the price of x is 1
- the price of y is 33 .

How many units of good y will Wanda demand?

$$
\begin{aligned}
& M R T=\frac{-1}{33} \\
& M R S=-\frac{M U x}{M U y}
\end{aligned}
$$

$$
M U x=\frac{\Delta U}{\Delta x}=1
$$

$$
M U y=\frac{\Delta U}{\Delta y}=63-6 y
$$

Wanda's utility function is $\mathrm{U}(\mathrm{x}, \mathrm{y})=\mathrm{x}+63 \mathrm{y}-3 \mathrm{y}^{2}$.

- Her income is 184 ,
- the price of x is 1
- the price of y is 33 .

How many units of good y will Wanda demand?

$$
M R T=\frac{-1}{33} \quad M R S=\frac{-1}{63-6 y}
$$

$M R T=M R S$

$\frac{-1}{33}=\frac{-1}{63-6 y}$

$33=63-6 y$
$6 y=30$
$y=5$

And how many units of good x ?
Budget restriction:

$$
\begin{aligned}
& x+33 y=184 \\
& x=184-33 y \\
& x=184-33 \cdot 5=184-165=19
\end{aligned}
$$

- Be careful with considering quasi-linear utility functions...

Wanda's utility function is $\mathrm{U}(\mathrm{x}, \mathrm{y})=\mathrm{x}+63 \mathrm{y}-3 \mathrm{y}^{2}$.

- Her income is $\mathbf{1 0 0}$,
- the price of x is 1
- the price of y is 33 .

How many units of good y will Wanda demand?

$$
\begin{aligned}
& \text { MRT = } \frac{-1}{33} \quad \text { MRS }=\frac{-1}{63-6 y} \\
& \begin{array}{l}
\text { MRT }=M R S \\
\frac{-1}{33}=\frac{-1}{63-6 y} \\
33=63-6 y
\end{array} \\
& \begin{array}{ll}
6 y=30 & \text { And how many units of good } \mathrm{x} \text { ? } \\
y=5 & x=33 y=100 \\
& x=100-33 y \\
& x=100-33 \cdot 5=100-165=-65
\end{array}
\end{aligned}
$$

Wanda's utility function is $U(x, y)=x+63 y-3 y^{2}$.

- Her income is $\mathbf{1 0 0}$,
- the price of x is 1
- the price of y is 33 .

How many units of good y will Wanda demand?

Only y is consumed

$$
y=\frac{M}{p_{y}}=\frac{100}{33}=3 \frac{1}{3}
$$

- Gravelle \& Rees, Chap 2.B
$\max _{x_{1}, \ldots, x_{n}} u\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad$ s.t. $\sum_{i} p_{i} x_{i} \leqslant M, \quad x_{i} \geqslant 0, \quad i=1, \ldots, n$

In Fig. 2.8 there is a tangency solution

$$
\left.\frac{d x_{2}}{d x_{1}}\right|_{u \text { constant }}=\left.\frac{d x_{2}}{d x_{1}}\right|_{M \text { constant }}
$$

$$
\begin{gathered}
M R S_{21}=\frac{u_{1}}{u_{2}}=\frac{p_{1}}{p_{2}} \\
\frac{u_{1}}{p_{1}}=\frac{u_{2}}{p_{2}} \\
\frac{u_{1}}{p_{1}}=\frac{u_{2}}{p_{2}}=u_{M}
\end{gathered}
$$

$$
\left.\frac{d x_{2}}{d x_{1}}\right|_{u \text { constant }}<\left.\frac{d x_{2}}{d x_{1}}\right|_{M \text { constant }}
$$

$$
\left.\frac{-d x_{2}}{d x_{1}}\right|_{u \text { constant }}=M R S_{12}=\frac{u_{1}}{u_{2}}>\frac{p_{1}}{p_{2}}=\left.\frac{-d x_{2}}{d x_{1}}\right|_{M \text { constant }}
$$

$$
u_{M}=\frac{u_{1}}{p_{1}}>\frac{u_{2}}{p_{2}}
$$

$$
\begin{aligned}
L & =u\left(x_{1}, \ldots, x_{n}\right)+\lambda\left[M-\sum p_{i} x_{i}\right] \\
\frac{\partial L}{\partial x_{i}} & =u_{i}-\lambda p_{i}=0 \quad i=1, \ldots, n \\
\frac{\partial L}{\partial \lambda} & =M-\sum p_{i} x_{i}^{*}=0 \\
\frac{u_{i}}{u_{j}} & =\frac{p_{i}}{p_{j}} \\
\frac{u_{1}}{p_{1}} & =\frac{u_{2}}{p_{2}}=\ldots=\frac{u_{n}}{p_{n}}=\lambda \\
\lambda & =\frac{d u^{*}}{d M}=u_{M} \quad \lambda \text { is the utility of money! }
\end{aligned}
$$

Corner solutions

$$
\begin{aligned}
x_{i}^{*} & >0 \\
\frac{\partial L}{\partial x_{i}} & =u_{i}-\lambda^{*} p_{i} \leqslant 0, \quad x_{i}^{*} \geqslant 0, \quad x_{i}^{*}\left(u_{i}-\right. \\
i & =1,2, \ldots, n \\
\lambda^{*} & \geqslant \frac{u_{i}}{p_{i}}, \quad x_{i}^{*} \geqslant 0, \quad x_{i}^{*}\left(\frac{u_{i}}{p_{i}}-\lambda^{*}\right)=0
\end{aligned}
$$

if the marginal utility of expenditure on good i , (ui/pi), is less than the marginal utility of money at the optimal point, λ^{*}, then good I will not be bought since the consumer will get greater utility by expenditure on other goods.
-What to do?

- Use KKT!

$$
\begin{array}{|l|}
\hline p_{x}=1 \\
p_{y}=33 \\
\hline
\end{array}
$$

Do I have to use KKT for the budget restriction here?

Thus this case can only happen when $M>165$

$$
\begin{aligned}
& U[x, y]=x+63 y-3 y^{2} \quad \text { s.t. } p_{x} x+p_{y} y=M \\
& L[x, y, \lambda]=x+63 y-3 y^{2}+\lambda\left(M-p_{x} x-p_{y} y\right) \\
& \text { KKT-FOCs: } \\
& 0=L_{1}=x \cdot\left(1-\lambda p_{x}\right) \&\left(1-\lambda p_{x}\right) \leq 0 \\
& 0=L_{2}=y \cdot\left(63-6 y-\lambda p_{y}\right) \&\left(63-6 y-\lambda p_{y}\right) \leq 0 \\
& 0=L_{3}=\lambda \cdot\left(M-p_{x} x-p_{y} y\right) \\
& \text { Case 1: } x>0, y>0 \\
& \lambda=\frac{1}{p_{x}} \\
& y=\frac{1}{6}\left(63-\lambda p_{y}\right)=\frac{1}{6}\left(63-\frac{p_{y}}{p_{x}}\right)=\frac{1}{6}(63-33)=5 \\
& p_{x} x=x=M-p_{y} y=M-33 \cdot 5=M-165
\end{aligned}
$$

$$
\begin{array}{ll}
U[x, y]=x+63 y-3 y^{2} & \text { s.t. } p_{x} x+p_{y} y=M \\
L[x, y, \lambda]=x+63 y-3 y^{2}+\lambda\left(M-p_{x} x-p_{y} y\right)
\end{array} \quad \begin{aligned}
& p_{x}=1 \\
& p_{y}=33
\end{aligned}
$$ KKT-FOCs:

$$
\begin{aligned}
& 0=L_{1}=x \cdot\left(1-\lambda p_{x}\right) \&\left(1-\lambda p_{x}\right) \leq 0 \\
& 0=L_{2}=y \cdot\left(63-6 y-\lambda p_{y}\right) \&\left(63-6 y-\lambda p_{y}\right) \leq 0
\end{aligned}
$$

$$
0=L_{3}=\lambda \cdot\left(M-p_{x} x-p_{y} y\right)
$$

Do I have to use KKT for the budget restriction here?
Case 2: $x=0, y>0 \quad x=0$
OK!

$$
\left.\begin{array}{l}
\lambda=\frac{p_{y}}{p_{y}}(63-6 y) \\
y=\frac{M}{p_{v}}=\frac{M}{33}
\end{array}\right\} \lambda=\frac{1}{33}\left(63-6 \cdot \frac{M}{33}\right)
$$

Let's check that $\left(1-\lambda p_{x}\right) \leq 0$

$$
\text { Case 2: } x=0, y>0\left\{\begin{array}{l}
\lambda=\frac{1}{p_{y}}(63-6 y) \\
y=\frac{M}{p_{y}}=\frac{M}{33}
\end{array}\right\} \lambda=\frac{1}{33}\left(63-6 \cdot \frac{M}{33}\right)
$$

Let's check that $\left(1-\lambda p_{x}\right) \leq 0$

$$
\begin{aligned}
& \left(1-\lambda p_{x}\right)<0 \Leftrightarrow \frac{1}{33}\left(63-6 \cdot \frac{M}{33}\right)>1 \Leftrightarrow\left(63-6 \cdot \frac{M}{33}\right)>33 \\
& \Leftrightarrow-6 \cdot \frac{M}{33}>-30 \Leftrightarrow \frac{M}{33}<5 \Leftrightarrow M<165
\end{aligned}
$$

Thus:

$$
\begin{array}{ll}
x\left[p_{x}=1, p_{y}=33, M\right] \\
=0 & \text { if } M \leq 165 \\
=M-165 & \text { if } M>165
\end{array}
$$

$$
y\left[p_{x}=1, p_{y}=33, M\right]
$$

$$
=\frac{M}{33}
$$

$$
=5
$$

$$
\text { if } M>165
$$

- Basic U-functions
- Quasi-Linear

1. Cobb-douglas
2. Linear
3. Leontiev

- The 3 are special cases of CES!
- The CES production function

$$
y=\left[x_{1}^{p}+x_{2}^{p}\right]^{\frac{1}{p}}
$$

Linear pf $\mathrm{p}=1$

Cobb-Douglas pf

Leontief pf
$p=-\infty$

- The CES production function

$$
y=\left[x_{1}^{p}+x_{2}^{p}\right]^{\frac{1}{p}}
$$

FACTOR 2

Linear pf p=1

$$
y=\left[x_{1}^{1}+x_{2}^{1}\right]^{\frac{1}{1}}=x_{1}+x_{2}
$$

- The CES production function

$$
y=\left[x_{1}^{p}+x_{2}^{p}\right]^{\frac{1}{p}}
$$

Cobb-Douglas pf

$$
\mathrm{p}=0
$$

- The CES production function

$$
y=\left[x_{1}^{p}+x_{2}^{p}\right]^{\frac{1}{p}}
$$

C

$$
\begin{aligned}
& \begin{aligned}
& T R S=-\left(\frac{x_{1}}{x_{2}}\right)^{p-1} \\
&=-\left(\frac{x_{1}}{x_{2}}\right)^{-\infty}=-\left(\frac{x_{2}}{x_{1}}\right)^{\infty} \\
& x_{2}> x_{1} \Rightarrow T R S=-\infty \quad \text { vertical } \\
& x_{2}<x_{1} \Rightarrow T R S=0 \quad \text { horizontal } \\
& \text { Same TRS as Leontief pf! }
\end{aligned} \text { ? }
\end{aligned}
$$

- The elasticity of substitution of the CES pf

$$
\left.\begin{aligned}
& \sigma=\frac{\frac{d\left(x_{2} / x_{1}\right)}{\left(x_{2} / x_{1}\right)}}{T{ }^{\frac{d T R S}{T R S}}}=\frac{d\left(x_{2} / x_{1}\right)}{d T R S} \frac{T R S}{\left(x_{2} / x_{1}\right)} \\
& \frac{x_{2}}{x_{1}}=|T R S|^{\frac{1}{1-\rho}} \\
& \ln \frac{x_{2}}{x_{1}}=\frac{1}{1-\rho} \ln |T R S| \\
& \sigma=\frac{d \ln x_{2} / x_{1}}{d \ln |T R S|}=\frac{1}{1-\rho}
\end{aligned} \right\rvert\,
$$

CES utility

The three specific utility functions illustrated so far are special cases of the more general constant elasticity of substitution function (CES), which takes the form

$$
\begin{equation*}
\text { utility }=U(x, y)=\frac{x^{\delta}}{\delta}+\frac{y^{\delta}}{\delta} \tag{3.29}
\end{equation*}
$$

where $\delta \leq 1, \delta \neq 0$, and

$$
\begin{equation*}
\delta=0 . \quad \text { Cobb-Douglass } \quad \text { utility }=U(x, y)=\ln x+\ln y \tag{3.30}
\end{equation*}
$$

$\delta=1 \quad$ Linear preferences
$\delta=-\infty \quad$ Leontief preferences

CES utility

The three specific utility functions illustrated so far are special cases of the more general constant elasticity of substitution function (CES), which takes the form

$$
\begin{equation*}
\text { utility }=U(x, y)=\frac{x^{\delta}}{\delta}+\frac{y^{\delta}}{\delta} \tag{3.29}
\end{equation*}
$$

where $\delta \leq 1, \delta \neq 0$, and
Case 1: $\delta=0.5$. In this case, utility is

$$
U(x, y)=x^{0.5}+y^{0.5} .
$$

Setting up the Lagrangian expression

$$
\begin{equation*}
\mathscr{L}=x^{0.5}+y^{0.5}+\lambda\left(I-p_{x} x-p_{y} y\right) \tag{4.29}
\end{equation*}
$$

yields the following first-order conditions for a maximum:

$$
\begin{align*}
& \partial \mathscr{L} / \partial x=0.5 x^{-0.5}-\lambda p_{x}=0 \\
& \partial \mathscr{L} / \partial y=0.5 y^{-0.5}-\lambda p_{y}=0 \tag{4.30}\\
& \partial \mathscr{L} / \partial \lambda=\boldsymbol{I}-\boldsymbol{p}_{x} \boldsymbol{x}-\boldsymbol{p}_{y} \boldsymbol{y}=\mathbf{0}
\end{align*}
$$

Division of the first two of these shows that

$$
\begin{equation*}
(y / x)^{0.5}=p_{x} / p_{y} \tag{4.31}
\end{equation*}
$$

By substituting this into the budget constraint and doing some messy algebraic manipulation, we can derive the demand functions associated with this utility function:

$$
\begin{align*}
\boldsymbol{x}^{*} & =\boldsymbol{I} / \boldsymbol{p}_{x}\left[\mathbf{l}+\left(\boldsymbol{p}_{x} / \boldsymbol{p}_{y}\right)\right] \tag{4.32}\\
\boldsymbol{y}^{*} & =\boldsymbol{I} / \boldsymbol{p}_{y}\left[\mathbf{l}+\left(\boldsymbol{p}_{y} / \boldsymbol{p}_{x}\right)\right] \tag{4.33}
\end{align*}
$$

Price responsiveness. In these demand functions notice that the share of income spent on, say, $\operatorname{good} x$-that is, $p_{x} x / I=1 /\left[1+\left(p_{x} / p_{y}\right)\right]$-is not a constant; it depends on the price ratio p_{x} / p_{y}. The higher is the relative price of x, the smaller will be the share of income spent on that good. In other words, the demand for x is so responsive to its own price that a rise in the

CES utility

The three specific utility functions illustrated so far are special cases of the more general constant elasticity of substitution function (CES), which takes the form

$$
\begin{equation*}
\text { utility }=U(x, y)=\frac{x^{\delta}}{\delta}+\frac{y^{\delta}}{\delta} \tag{3.29}
\end{equation*}
$$

where $\delta \leq 1, \delta \neq 0$, and

Case 2: $\delta=-1$.

$$
\begin{equation*}
U(x, y)=-x^{-1}-y^{-1} \tag{4.34}
\end{equation*}
$$

and it is easy to show that the first-order conditions for a maximum require

$$
\begin{equation*}
y / x=\left(p_{x} / p_{y}\right)^{0.5} . \tag{4.35}
\end{equation*}
$$

Again, substitution of this condition into the budget constraint, together with some messy algebra, yields the demand functions

$$
\begin{align*}
x^{*} & =\boldsymbol{I} / p_{x}\left[\mathbf{1}+\left(p_{y} / p_{x}\right)^{\mathbf{0 . 5}}\right], \\
y^{*} & =\boldsymbol{I} / \boldsymbol{p}_{y}\left[\mathbf{1}+\left(p_{x} / p_{y}\right)^{\mathbf{0 . 5}}\right] . \tag{4.36}
\end{align*}
$$

That these demand functions are less price responsive can be seen in two ways. First, now the share of income spent on good x-that is, $p_{x} x / I=1 /\left[1+\left(p_{y} / p_{x}\right)^{0.5}\right]$-responds positively to increases in p_{x}. As the price of x rises, this individual cuts back only modestly on good x, so total spending on that good rises. That the demand functions in Equations 4.36 are less price responsive than the Cobb-Douglas is also illustrated by the relatively small exponents of each good's own price (-0.5).

CES utility

The three specific utility functions illustrated so far are special cases of the more general constant elasticity of substitution function (CES), which takes the form

$$
\begin{equation*}
\text { utility }=U(x, y)=\frac{x^{\delta}}{\delta}+\frac{y^{\delta}}{\delta} \tag{3.29}
\end{equation*}
$$

where $\delta \leq 1, \delta \neq 0$, and

Case 3: $\delta=-\infty$.
(3) The Leontief production function $(\mathrm{p}=-\infty)$. We have just seen that the TRS of the CES production function is given by equation (1.1). As ρ approaches $-\infty$, this expression approaches

$$
T R S=-\left(\frac{x_{1}}{x_{2}}\right)^{-\infty}=-\left(\frac{x_{2}}{x_{1}}\right)^{\infty}
$$

If $x_{2}>x_{1}$ the TRS is (negative) infinity; if $x_{2}<x_{1}$ the TRS is zero. This means that as ρ approaches $-\infty$, a CES isoquant looks like an isoquant associated with the Leontief technology.

5.6 Choosing Taxes

Better to levy tax on a good (x1) or on income (M)?

On a good:

$$
p_{1} x_{1}+p_{2} x_{2}=m
$$

$$
\left(p_{1}+t\right) x_{1}+p_{2} x_{2}=m
$$

$$
\left(p_{1}+t\right) x_{1}^{*}+p_{2} x_{2}^{*}=m
$$

$$
R^{*}=t x_{1}^{*}
$$

5.6 Choosing Taxes

Better to levy tax on a good (x1) or on income (M)?

On income:

$$
\begin{aligned}
& p_{1} x_{1}+p_{2} x_{2}=m-R^{*} \\
& p_{1} x_{1}+p_{2} x_{2}=m-t x_{1}^{*} \\
& p_{1} x_{1}^{*}+p_{2} x_{2}^{*}=m-t x_{1}^{*} ? \\
& \left(p_{1}+t\right) x_{1}^{*}+p_{2} x_{2}^{*}=m
\end{aligned}
$$

Steps

- First consider quantity tax on good 1 - What is the revenue R ?
- Now look what would be the budget restriction that brings the same revenue R but is levied on income
- Compare outcomes

EVROPSKA UNIE
EvTopske strudurdini a imestigil fondy
Operauni program Vyoburn, wivol a veddataini

Národohospodářská fakulta VŠE v Praze

(c) \mathbb{C} (ㅇ)

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, POBox 1866, Mountain View, CA.94042, USA

