Game theory

Price Discrimination Tomáš Miklánek

Evropské strukturální a investiční fondy
Operační program Výzkum, vývoj a vzdělávání

Price discrimination

- First-degree price discrimination means that the monopolist sells different units of output for different prices and these prices may differ from person to person
- Second-degree price discrimination means that the monopolist sells different units of output for different prices, but every individual who buys the same amount of the good pays the same price.
- Third-degree price discrimination occurs when the monopolist sells output to different people for different prices, but every unit of output sold to a given person sells for the same price.
Source: Varian (2014)

First-degree price discrimination

Source: Varian (1992)

$2^{\text {nd }}$ degree price discrimination

- Sequential game
- Stage 1: Monopolist creates consumption packages (quantity, quality, price) to offer
- Stage 2: Consumer chooses one of the packages on offer
- Varian, intermediate Microeconomics, Chap 25.3
- Probability $1 / 2$ for a poor person P
- Probability $1 / 2$ for a rich person R
- Monopolist cannot see the difference

Second-Degree Price Discrimination
What packages to offer to the consumer types of R \& P?
Marginal WTP

Quantity	Type P	Type R
1	7	10
2	1	5

- How to differentiate packages to target them for the two different groups?

Second-Degree Price Discrimination
What packages to offer to the consumer types of $\mathbf{R} \& P$?
Marginal WTP

Quantity	Type \mathbf{P}	Type R
1	7	10
2	1	5

[^0]Monopolist
profit: 22/2

What packages to offer to the consumer types of R \& P?
Marginal WTP

Quantity	Type \mathbf{P}	Type R
1	7	10
2	1	5

Second-Degree Price Discrimination
What packages to offer to the consumer types of R \& P?
Marginal WTP

Quantity	Type \mathbf{P}	Type R
1	7	10
2	1	5

- Type P:
- Quantity 1
- Price 7
- Type R:
- Quantity 2
- Price 15-3=1
- (Profit R = 3)

Monopolien profit (19/2 ${ }^{11}$

All possible strategies

- Squeeze P
- Allow R the profit he could earn by pretending to be P
- The information rent

Second-Degree Price Discrimination
What packages to offer to the consumer types of R \& P?
Marginal WTP

Quantity	Type \mathbf{P}	Type R
1	7	10
2	1	5

- Type P:
- Quantity 1
- Price 7
- Type R:
- Quantity 2
- Price 15

Mononalict profl $22 / 2$

- But...
- Type R pretends to be P:
- Quantity 1
- Price 7
- WTP=10
- Profit R=3!

Monopolist profit: 14/2

- Type P:
- Quantity 1
- Price 7
- Type R:
- Quantity 2
- Price $15-3=12$
$\cdot($ Profit $R — 3)$
$\frac{\text { Monopoliek }}{\text { profiL } 19 / 2}$

Second-Degree Price Discrimination
What packages to offer to the consumer types of R \& P?
Marginal WTP

Quantity	Type \mathbf{P}	Type \mathbf{R}
1	6	10
2	1	5

- Type P:
- Quantity 1
- Price 6
- Type R:
- Quantity 2
- Price 15

Monopolist profit 21/2

- But...
- Type R pretends to be P:
- Quantity 1
- Price 6
- WTP=10
- Profit R=4!

Monopolist profit: $12 / 2$

- Type P:
- Quantity 1
- Price 6
- Type R:
- Quantity 2
- Price 15-4=
- (Profit R = 4)

Monopoliet
profi $17 / 2)^{5}$

Second-Degree Price Discrimination
What packages to offer to the consumer types of R \& P?
Marginal WTP

Quantity	Type P	Type R
1	4	10
2	1	5

- Type P:
- Quantity 1
- Price 4
- Type R:
- Quantity 2
- Price 15

Monopolist
profit: 9/2

- But...
- Type R pretends to be P:
- Quantity 1
- Price 4
- WTP=10
- Profit R=6!

Monopolist profit: $8 / 2$

- Type P:
- Quantity 1
- Price 4
- Type R:
- Quantity 2
- Price 15-6=9
- (Profit R $=6$)

Monopol profit: (3/2

Second-Degree Price Discrimination
What packages to offer to the consumer types of R \& P?
Marginal WTP

Quantity	Type \mathbf{P}	Type R
1	4	10
2	1	5

- Type P:
- Quantity 1
- Price 4
- But...
- Monopolists stops catering for Type P and sells only to R:
- Quantity 2
- Price 15
- Profit R = 0 !

Monopolist profit: 15/2

- Look at the continuous version of this problem

$\mathrm{P}_{\mathrm{R}}=10-\mathrm{q}_{\mathrm{R}}{ }_{10}$

What has the shortage of space for your knees to do with 2nd price discrimination?

Max $_{q} \frac{1}{2} \cdot$ Profit from poor $+\frac{1}{2} \cdot$ Profit from rich
Max $_{q} \frac{1}{2} \cdot$ CS of poor $+\frac{1}{2} \cdot($ CS of rich - Information Rent $)$
$\operatorname{Max}_{q} \frac{1}{2} \cdot \int_{0}^{q}(8-2 x) d x+\frac{1}{2} \cdot\left(\int_{0}^{10}(10-x) d x-\int_{0}^{q}(10-x-(8-2 x)) d x\right)$
$\operatorname{Max}_{q} \frac{1}{2} \cdot \int_{0}^{q}(8-2 x) d x+\frac{1}{2} \cdot \int_{0}^{10}(10-x) d x-\frac{1}{2} \cdot \int_{0}^{q}(2+x) d x$
$\operatorname{Max}_{q} \frac{1}{2} \cdot\left[8 x-x^{2}\right]_{0}^{q}+\frac{1}{2} \cdot\left[10 x-\frac{1}{2} x^{2}\right]_{0}^{10}-\frac{1}{2} \cdot\left[2 x+\frac{1}{2} x^{2}\right]_{0}^{q}$

$$
\operatorname{Max}_{q} \frac{1}{2} \cdot\left(8 q-q^{2}\right)+\frac{1}{2} \cdot(100-50)-\frac{1}{2} \cdot\left(2 q+\frac{1}{2} q^{2}\right)
$$

$$
\operatorname{Max}_{q} 25+\frac{1}{2} \cdot\left(6 q-1 \frac{1}{2} q^{2}\right)
$$

$$
0=6-3 q
$$

$$
q=2
$$

$\operatorname{Max}_{q}(1-a) \cdot$ Profit from poor $+a \cdot$ Profit from rich
$\operatorname{Max}_{q}(1-a) \cdot \mathrm{CS}_{q}$ of poor $+a \cdot($ Total CS of rich - Information Rent $)$ $\operatorname{Max}_{q}(1-a) \cdot \mathrm{CS}_{q}$ of poor $+a \cdot\left(\right.$ Total CS of rich $-\left(\mathrm{CS}_{\mathrm{q}}\right.$ of rich $-\mathrm{CS}_{\mathrm{q}}$ of poor $\left.)\right)$ $\operatorname{Max}_{q} 1 \cdot \mathrm{CS}_{q}$ of poor $+a \cdot\left(\right.$ Total CS of rich $-\mathrm{CS}_{\mathrm{q}}$ of rich $)$
$\operatorname{Max}_{q} \mathrm{CS}_{q}$ of poor $-a \cdot \mathrm{CS}_{\mathrm{q}}$ of rich $+a \cdot($ Total CS of rich $)$
$\operatorname{Max}_{q} \int_{0}^{q}(8-2 x) d x-a \cdot \int_{0}^{q}(10-x) d x+a \cdot \int_{0}^{10}(10-x) d x$
$\operatorname{Max}_{q}\left[8 x-x^{2}\right]_{0}^{q}-a \cdot\left[10 x-\frac{1}{2} x^{2}\right]_{0}^{q}+a \cdot\left[10 x-\frac{1}{2} x^{2}\right]_{0}^{10}$
$\operatorname{Max}_{q}\left(8 q-q^{2}\right)-a \cdot\left(10 q-\frac{1}{2} q^{2}\right)+a \cdot(100-50)$
$0=8-2 q-a \cdot(10-q)$
$(2-a) q=8-10 a \quad q=\frac{8-10 a}{2-a}$
$a=\frac{1}{2} \Leftrightarrow q=\frac{8-5}{2-\frac{1}{2}}=\frac{3}{1 \frac{1}{2}}=2$

- Varian, Microeconomic Analysis, Chap 14.7

More general problem
Consumer \mathbf{R} and \mathbf{P} have utility functions expressing the willingness to pay (in \$)

$$
\begin{aligned}
& u_{P}(x) \\
& u_{R}(x)
\end{aligned}
$$

Cost of production

$$
C(x)
$$

What would be the efficient way of production?

$$
\begin{aligned}
& P_{P}=u_{P}^{\prime}\left(x_{P}\right)=C^{\prime}\left(x_{P}+x_{R}\right) \\
& P_{R}=u_{R}^{\prime}\left(x_{R}\right)=C^{\prime}\left(x_{P}+x_{R}\right)
\end{aligned}
$$

$\left(p_{p}, x_{e}\right)$
Package Deal for Poor
$u_{P}(x)<u_{R}(x)$ $u_{P}^{\prime}(x)<\quad u_{R}^{\prime}(x)$

$$
\mathbb{R}_{R}: u_{R}\left(x_{R}\right)-P_{R} \geq 0
$$

2. Incentive Compatabillity (IC) = self-selection constraints for true revelation:
$\mathrm{IC}_{\mathrm{P}}: \boldsymbol{u}_{\boldsymbol{P}}\left(\boldsymbol{x}_{P}\right)-\boldsymbol{P}_{P} \geq \boldsymbol{u}_{P}\left(x_{R}\right)-P_{R} \quad \quad \mathrm{IC}_{R}: \boldsymbol{u}_{R}\left(x_{R}\right)-\boldsymbol{P}_{R} \geq \boldsymbol{u}_{R}\left(x_{P}\right)-P_{P}$
Why we want true revelation?

!!! The revelation principle !!!

-For the outcomes of any dishonest) R strategy that P \& R can think up in reaction to our package deal $\left\{\left(\mathrm{P}_{\mathrm{P}}, \mathrm{x}_{\mathrm{P}}\right),\left(\mathrm{P}_{\mathrm{R}}, \mathrm{x}_{\mathrm{R}}\right)\right\}$
-There is a (different) package deal $\left\{\left(\mathrm{P}_{P^{\prime}}{ }^{\prime}\right)\left(\mathrm{P}_{R^{\prime}}, \mathrm{x}_{\mathrm{R}}{ }^{\prime}\right)\right\}$, with the same outcomes, and strategies that ar honest true revelations)

All possible strategies

$\left(p_{P}, x_{P}\right)$

$$
\begin{gathered}
u_{P}(x)<u_{R}(x) \\
u_{P}^{\prime}(x)<u_{R}^{\prime}(x)
\end{gathered}
$$

$u_{R}(x)$
$p_{\left.0, x_{2}\right)}$

Package Deal for Poor
Package Deal for Rich

1. Individual Rationality (IR):
$\mathrm{IR}_{\mathrm{p}}: \boldsymbol{u}_{\boldsymbol{P}}\left(\boldsymbol{x}_{\boldsymbol{P}}\right)-\boldsymbol{P}_{\boldsymbol{P}} \geq \mathbf{0}$

$$
\mathbb{R}_{R}: u_{R}\left(x_{R}\right)-P_{R} \geq 0
$$

2. Incentive Cómpatabillity (IC) = self-selection constraints for true revelation
$\mathrm{IC}_{\mathrm{P}}: u_{P}\left(x_{P}\right)-P_{P} \geq u_{P}\left(x_{R}\right)-P_{R} \quad \mathrm{IC}_{\mathrm{R}}: u_{R}\left(x_{i R}^{i}\right)-P_{R} \geq u_{R}\left(x_{P}\right)-P_{P}$
$\mathbf{I R}_{\mathrm{p}}$:

$$
P_{P} \leq u_{P}\left(x_{P}\right)
$$

Information rent
$\left(p_{P}, x_{P}\right)$
Package Deal for Poor
$\mathrm{IR}_{\mathrm{P}}: \quad \boldsymbol{P}_{P}=u_{P}\left(x_{P}\right)$
$\boldsymbol{u}_{\boldsymbol{P}}(\boldsymbol{x})<\boldsymbol{u}_{\boldsymbol{R}}(\boldsymbol{x})$
$u_{p}^{\prime}(x)<u_{R}^{\prime}(x)$
Given:

Package Deal for Rich

$$
\mathrm{IC}_{\mathrm{R}}: P_{R}=u_{R}\left(x_{R}\right)+\left(P_{P}-u_{R}\left(x_{P}\right)\right)
$$

Maximize profit

$$
E \pi=\frac{1}{2}\left(\left[P_{P}\right]-C\left[x_{P}\right]\right)+\frac{1}{2}\left(\left[P_{R}\right]-C\left[x_{R}\right]\right)
$$

$$
E \pi=\frac{1}{2}\left(\left[u_{P}\left(x_{P}\right)\right]-C\left[x_{P}\right]\right)+\frac{1}{2}\left(\left[u_{R}\left(x_{R}\right)+\left(u_{P}\left(x_{P}\right)-u_{R}\left(x_{P}\right)\right)\right]-C\left[x_{R}\right]\right)
$$

$$
0 \equiv \frac{d \pi}{d x_{R}}=u_{R}^{\prime}\left(x_{R}\right)-C^{\prime}\left[x_{R}\right] \left\lvert\, \frac{d \pi}{d x_{P}}=u_{P}^{\prime}\left(x_{P}\right)+u_{P}^{\prime}\left(x_{P}\right)-u_{R}^{\prime}\left(x_{P}\right)-C^{\prime}\left[x_{P}\right]\right.
$$

$$
u_{R}^{\prime}\left(x_{R}\right)=C^{\prime}\left[x_{R}\right]
$$

$$
u_{P}^{\prime}\left(x_{P}\right)=\left(u_{R}^{\prime}\left(x_{P}\right)-u_{P}^{\prime}\left(x_{P}\right)\right)+C^{\prime}\left[x_{P}\right]
$$

Perfect information

- Calculate the optimal price-quantity offer for

1. the poor
2. the rich

Imperfect information

- Calculate the optimal price-quantity offer for

3. the poor
4. the rich
5. Calculate the information rent of the rich

Národohospodářská fakulta VŠE v Praze

(c) (i) (-)

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

[^0]: Package 2

 - Type P:
 - Quantity 1
 - Price 7
 - Type R:
 - Quantity 2
 - Price 15

