Game Theory: Auctions

Tomáš Miklánek

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Jar with money

Jar with money

- You are going to place your bids for the jar full of coins.
- You will write your bid on the piece of paper together with your name.
- A bidder with the highest bid wins the jar a pays me his/her bid.
- Amount of money in the jar will not be announced publicly.
- By submitting the bid, you agree with these rules.

The winner's curse

• The estimates are correct, on average

What is an Auction?

- 1. A public sale in which property or merchandise are sold to the highest bidder.
- 2. A market institution with explicit rules determining resource allocation and prices on the basis of bids from participants.
- 3. Games: The bidding in bridge

[Latin: auctiō, auctiōn – from auctus, past participle of augēre, to increase]

Examples of auctions

- Internet
 - EBay.com, Amazon.com, airline companies
- Government
 - Treasury Bills, mineral rights (e.g. oil fields), assets (e.g. privatization)
 - Electromagnetic spectrum
- Stocks
 - IPO: Google, Repurchases
- Procurement auctions/Subcontracting
 - Automobiles: Valeo (GM, Daimler-Chrysler, etc..), Visteon (Ford)

Examples of auctions

- Internet
 - EBay.com, Amazon.com, airline companies
- Government
 - Treasury Bills, mineral rights (e.g. oil fields), assets (e.g. privatization)
 - Electromagnetic spectrum
- Stocks
 - IPO: Google, Repurchases
- Procurement auctions/Subcontracting
 - Automobiles: Valeo (GM, Daimler-Chrysler, etc..), Visteon (Ford)
- Are auctions a competitive market?
- Are auction outcomes pareto-optimal?

Spectrum auctions

- UK 2000: EUR 38.3 billions
- Germany 2008: EUR 50.8 billions
- CR 2016: EUR 100 millions

Ways to Categorize Auctions

- Number of objects
 - We focus on single object auctions, but ideas apply to multi-unit auctions
- Role of information / Type of valuation
 - Private value vs. Common value
- Rules of auction Ascending (Ebay or Sotheby's), first-price (oil tracts), etc..

Auction Formats

Open outcry auction

- Ascending Auctions (English)
 - Auctioneer announces ever increasing prices to solicit bids. Continues until only one person left in.
- Descending Auctions (Dutch)
 - Auctioneer announces decreasing prices until someone puts up their hand.
- Sealed bid (closed) auction
 - Everyone puts bids in envelopes and gives to seller at the same time.
 - First price, Second price

Example: Art Auction

- 3 individuals with private values of \$60,000, \$70,000 and \$80,000 compete for a work of art
- What will happen in the ascending auction?
- What if we used a descending auction?

Ascending vs. Descending Auctions

- Do bidders bid their true valuation in ascending or descending auctions?
- Ascending: Yes bidding up to your true valuation is the dominant strategy
- Descending: No each bidder "shades down" his bid.
 - Risk averse bidders shade less

More Bidders Matters

- What if there were more bidders, say with private values of \$60,000, \$61,000, ..., \$79,000, \$80,000?
- More revenue in both ascending and descending
- Ascending: Second-highest value is now \$79,000
- Descending: Less incentive to shade bid since it's more likely someone else will jump in with more bidders

Bidding for an Oil Block

- Five People will bid, in one-time first-price auction. The top bid gets the block
- The true value of the field = X^{True} , but no bidder knows what X^{True} is. It will be revealed (drilled) after the bidding.
- Each bidder hires his/her own consultant to give an expert estimate of the value.

How Good Are the Experts?

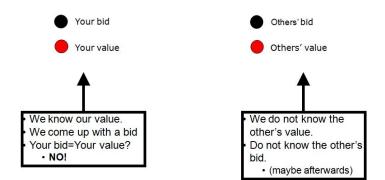
- Oil experts can estimate reserves only with some error.
- The distribution of these types of oil estimates tends to be the following:

$$Consultant's estimate = \begin{cases} X^{True} + 40 & with prob. 1/5 \\ X^{True} + 20 & with prob. 1/5 \\ X^{True} & with prob. 1/5 \\ X^{True} - 20 & with prob. 1/5 \\ X^{True} - 40 & with prob. 1/5 \end{cases}$$

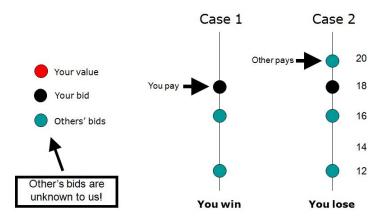
• Given your consultant's estimate, how much will you bid?

Winner's Curse

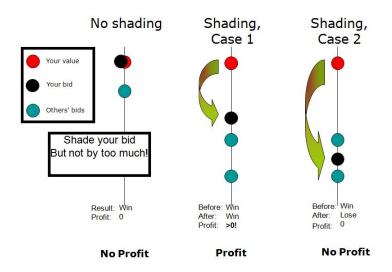
- Winner's Curse = Tendency to overbid due to the fact that bidder with highest estimate (or signal) will win
 - An issue in all common value auctions, worse with more bidders participating
 - To avoid the curse, simply assume your signal is the most overly optimistic when bidding


First Price Auction

First Price Auction


- Everybody submits her/his bid.
- A bidder with the highest bid wins the price.
- What is the best strategy?

Motivation Categorization FPA SPA Open auctions Other auction formats


Bidding your valuation?

Outcomes

Bid shading

FPA

- First price auction presents tradeoffs
 - bidding your valuation: no surplus
- Lower your bid below your valuation
 - Smaller chance of winning, lower price
- Bid shading
 - Depends on the number of bidders
 - Depends on your information
 - Optimal bidding strategy is complicated!

- Imagine that one good is sold in an FPA auction there are 2 bidders: bidder X and bidder Y.
- You are bidder X. You do not know the value or the bid of bidder Y for the good, but you know
 - the value of Y will be between 0 and 1, with all values having an equal probability (a uniform distribution).

- Imagine that one good is sold in an FPA auction there are 2 bidders: bidder X and bidder Y.
- You are bidder X. You do not know the value or the bid of bidder Y for the good, but you know
 - the value of Y will be between 0 and 1, with all values having an equal probability (a uniform distribution).
- Y doesn't know the value or the bid of bidder X, but Y knows
 - the value of X will be between 0 and 1, with all values having an equal probability (a uniform distribution).

• You also know that Y has a strategy to bid $\frac{1}{2}$ his value, thus: $b_y(v_y) = \frac{1}{2}v_y$.

- You also know that Y has a strategy to bid $\frac{1}{2}$ his value, thus: $b_y(v_y) = \frac{1}{2}v_y$.
- So for example, if Y happens to have a value of 1 for the good, what will Y bid?

• 0.5

- If Y happens to have a value of 0.8 for the good, what will Y bid?
 - 0.4

- You also know that Y has a strategy to bid $\frac{1}{2}$ his value, thus: $b_y(v_y) = \frac{1}{2}v_y$.
- So for example, if Y happens to have a value of 1 for the good, what will Y bid?

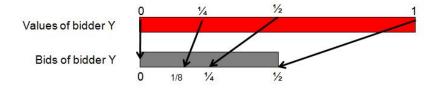
• 0.5

• If Y happens to have a value of 0.8 for the good, what will Y bid?

• 0.4

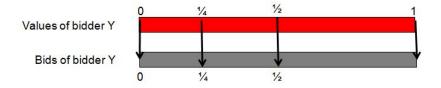
• What is your optimal bidding strategy $b_x(v_x)$ (the bid you would make as a function of the value for the good for you)?

Optimal bidding strategy

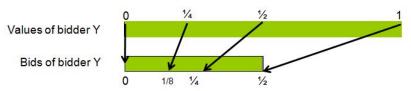

- My profit function is given by:
- PROFIT= (GAIN OF WINNING) * (PROBABILITY OF WINNING)

Optimal bidding strategy

- My profit function is given by:
- PROFIT= (GAIN OF WINNING) * (PROBABILITY OF WINNING)
- GAIN OF WINNING= $(v_x b_x)$


Probability?

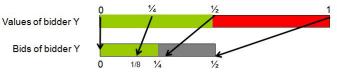
Y has a strategy to bid ½ his value, thus:
 b_y(v_y)= ½ v_y.


What if...

 Y has a strategy to bid his value, thus: b_y(v_y)= v_y.

If I bid b_x , my chance of winning is my bid: b_x

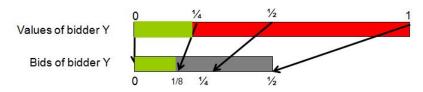
Y bids half of his value ...


What is Pr(WINNING when my bid is bx)?

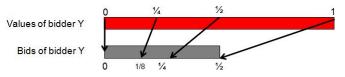
What if I bid ½?

- pr(winning)=100%

Y will never bid more than ½ -> I win for sure


Y bids half of his value...

What is Pr(WINNING when my bid is bx)?


- What if I bid ½?
 - pr(winning)=100%
 - Y will never bid more than ½ -> I win for sure
- What if I bid 1/4?
 - pr(winning)=50%
 - ½ chance that the bid of Y will be higher and ½ that it will be lower

Y bids half of his value ...

- What if I bid 1/8?
 - pr(winning)=25%
 - 75% chance that the bid of Y will be higher and 25% that it will be lower
- What is the general rule?
 - My chance of winning is two times my bid:
 2 bx

Optimal bidding

- · Thus my profit function is:
- PROF= (GAIN OF WINNING)* (PROBABILITY OF WINNING)
- PROF= (vx bx) * 2 bx
- Differentiate towards bx, gives the First Order Condition (FOC):
- FOC: 2 (vx bx) 2 bx =0
- <-> 2 vx 4 bx =0
- <-> bx = ½ vx

Nash

• Is this a Nash equilibrium?

•
$$b_y = \frac{1}{2}v_y$$

• $b_x = \frac{1}{2}v_x$

• Given that me (X) and Y have a value uniformly distributed on [0,1]

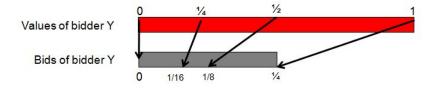
Nash

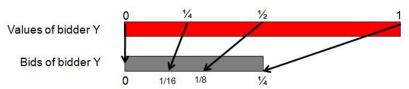
• Is this a Nash equilibrium?

•
$$b_y = \frac{1}{2}v_y$$

• $b_x = \frac{1}{2}v_x$

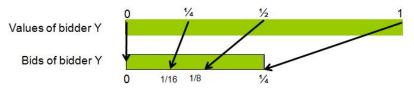
- Given that me (X) and Y have a value uniformly distributed on [0,1]
- I maximize my profit given that Y has the strategy of bidding half its value Y maximizes its profit given that I have the strategy of bidding half its value
- YES! Is a Nash equilibrium.


If Y bids differently...


- You also know that Y has a strategy to bid $\frac{1}{4}$ his value, thus: $b_y(v_y) = \frac{1}{4}v_y$.
- So for example, if Y happens to have a value of 1 for the good, what will Y bid?
 - 0.25,
- If Y happens to have a value of 0.8 for the good, what will Y bid?
 - 0.2
- What is your optimal bidding strategy $b_x(v_x)$ (the bid you would make as a function of the value for the good for you)?

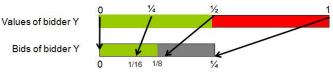
Optimal bidding

- My profit function is given by: PROFIT = (GAIN OF WINNING) * (PROBABILITY OF WINNING)
- GAIN OF WINNING= $(v_x b_x)$


Y has a strategy to bid ¼ his value, thus:
 b_y(v_y)= ¼ v_y.

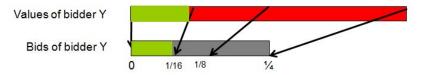
What is Pr(WINNING when my bid is bx)?

- What if I bid 1/2?
 - pr(winning)=100%
 - Y will never bid more than 1/4 -> I win for sure



What is Pr(WINNING when my bid is bx)?

• What if I bid 1/4?


- pr(winning)=100%

• Y will never bid more than 1/4 -> I win for sure

What is Pr(WINNING when my bid is bx)?

- What if I bid 1/4?
 - pr(winning)=100%
 - Y will never bid more than 1/4 -> I win for sure
- What if I bid 1/8?
 - pr(winning)=50%
 - ½ chance that the bid of Y will be higher and ½ that it will be lower

- What if I bid 1/16?
 - pr(winning)=25%
 - 75% chance that the bid of Y will be higher and 25% that it will be lower
- What is the general rule?
 - My chance of winning is four times my bid: 4 bx

Optimal bidding

 Thus my profit function is: PROF= (GAIN OF WINNING) * (PROBABILITY OF WINNING)

• PROFIT=
$$(v_x - b_x) * 4b_x$$

• Differentiate wrt b_x , gives the First Order Condition (FOC):

Optimal bidding

 Thus my profit function is: PROF= (GAIN OF WINNING) * (PROBABILITY OF WINNING)

• PROFIT=
$$(v_x - b_x) * 4b_x$$

• Differentiate wrt b_x , gives the First Order Condition (FOC):

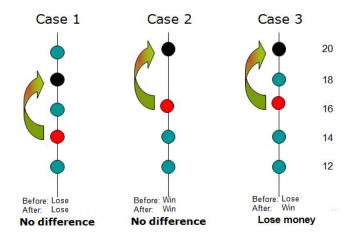
• FOC:
$$4(v_x - b_x) - 4b_x = 0$$

• $4v_x - 8b_x = 0 \implies b_x = \frac{1}{2}v_x$

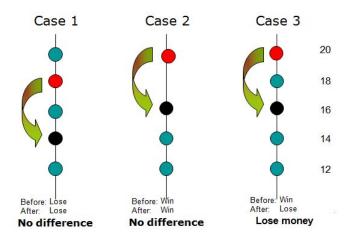
Is this Nash Equilibrium?

•
$$b_y = \frac{1}{4}v_y$$
 and $b_x = \frac{1}{2}v_x$

• Given that me (X) and Y have a value uniformly distributed on [0,1]


Is this Nash Equilibrium?

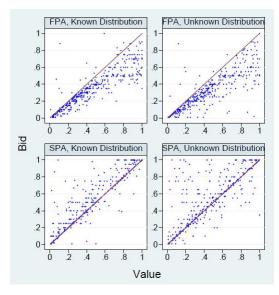
- $b_y = \frac{1}{4}v_y$ and $b_x = \frac{1}{2}v_x$
- Given that me (X) and Y have a value uniformly distributed on [0,1]
- I maximize my profit given that Y has the strategy of bidding half its value (for values lower than 1/2).
- Y maximizes its profit given that I have the strategy of bidding half its value?
 - No! This is not a Nash equilibrium.


Second Price Auction

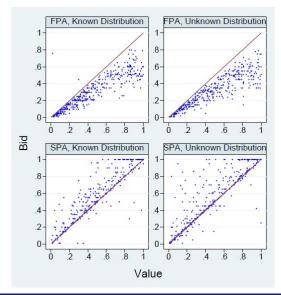
- An auction in which the bidder who submitted the highest bid is awarded the object being sold and pays a price equal to the second highest amount bid.
- Alternately, in a procurement auction, the winner is the bidder who submits the lowest bid, and is paid an amount equal to the next lowest submitted bid.
- The theoretical nicety of second price auctions, first pointed out by William Vickrey, is that bidding one's true value is a dominant strategy.

Bidding higher than my valuation

Bidding lower than my valuation


Best strategy

- In a second price auction, always bid your true valuation
- Winning bidder's surplus
 - Difference between the winner's valuation and the second highest valuation
- Surplus decreases with more bidders


Which auction to use?

- In a second price auction bidders bid their true value
 - auctioneer receives the second highest bid
- In a first price auction bidders bid below their true value
 - auctioneer receives the highest bid

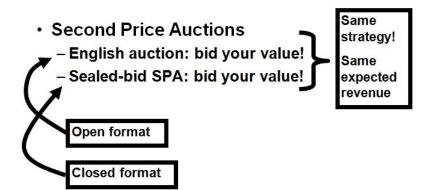
In practice- inexperienced subjects

In practice- experienced subjects

Tomáš Miklánek

Game Theory: Auctions

English Auction


Auction procedure:

- I start with a price of zero
- Everybody who keeps his hand in the air is bidding.
- I increase the price slowly If the price becomes too high, you can withdraw from the auction by drawing back your hand
- The auction is over when only one bidder is still in the auction

The bidder left in the auction wins

• And pays the price level the auction stopped at.

Optimal bidding strategy in English Auction

Dutch Auction

Auction procedure:

- I start with a price of
- I slowly decrease the price
- The auction is over when one bidder raises his/her hand

The first bidder to raise the hand wins the auction

• And pays the price level the auction stopped at

Dutch Auction

Auction procedure:

- I start with a price of ...
- I slowly decrease the price
- The auction is over when one bidder raises his/her hand

The first bidder to raise the hand wins the auction

- And pays the price level the auction stopped at
- What will be your strategy in such auction?

Overview

- Closed auctions
 - FPA
 - SPA (Vickrey auction)
- Open auctions
 - English (ascending price auction)
 - Dutch (descending price auction)
- Outcome equivalence between
 - FPA & Dutch
 - SPA & English

All pay auction

Auction procedure:

- Write down a bid on a paper
- The person with the highest bid wins
 - And pays the price (s)he bid
 - All the others also pay the price they bid

All pay auction

Auction procedure:

- Write down a bid on a paper
- The person with the highest bid wins
 - And pays the price (s)he bid
 - All the others also pay the price they bid
- Examples?

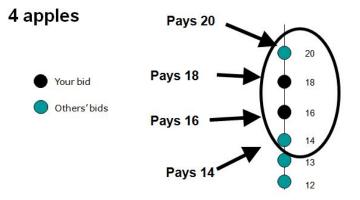
All pay auction: examples

• Tender competitions

- Time and effort to prepare a prospectus
- Elections
 - Advertising & promotion costs
- Lobbying effort
- Legal action
 - Lawyers
 - Expert reports from forensic specialists, statisticians, economists, psychologists

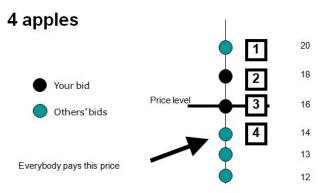
Revenue equivalence theorem

- In any auction where:
 - The bidder with the highest bid wins the auction
 - Values are distributed independently and identically
 - All bidders are risk neutral
 - The expected payment of a bidder with value zero is zero


Revenue equivalence theorem

- In any auction where:
 - The bidder with the highest bid wins the auction
 - Values are distributed independently and identically
 - All bidders are risk neutral
 - The expected payment of a bidder with value zero is zero
- The seller yields the same expected revenue

Multiple units


- More than 1 unit of the good is sold at the same time.
- You can also post (different or the same) bids for more than 1 unit.
- Types:
 - Discriminating auction (Pay-Your-Bid)
 - Modified Dutch auction (uniform price auction)

Discriminating auction (Pay-Your-Bid)

Motivation Categorization FPA SPA Open auctions Other auction formats

Modified Dutch auction (uniform price auction)

Uniform price (example)

Discount Rate 0,0000	Face Value (\$ t ^{:11:} ns)	Cumulative Face Value (\$ l 5 'ns)
0.1081	3	3 8
0.1090	12	15 20
0.1098	8	23 28
0.1104	5	28 33
0.1117	8	36 41
0.1124	7	36

Figure 10: Auction Bids for Treasury Bills

- Seller:
 - Suppose the Treasury wants to sell \$35b in bills
- Buyer:
 - Total competitive bids: \$36b
 - · specify the amount of bills (in face value) and price (yield=discount rate)
 - non-competitive bids: \$5b
 - · specify the amount of bills (in face value), but not price
 - · Will accept any resulting price
 - Imagine simply that non-competitive bidders bid a price of zero
 - then determine the price at which the total quantity supplied of competitive + non-competitive bids is equal to \$35b

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Národohospodářská fakulta VŠE v Praze

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-sa/4.0/</u> or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.