Game Theory

Tomáš Miklánek

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Bargaining

- Government policy is typically the outcome of negotiations among cabinet ministers.
- National governments are often engaged in a variety of international negotiations on matters ranging from economic issues to global security, and environmental and related issues...
- Mergers and acquisitions require negotiations over the price at which such transactions are to take place
- Couples negotiate over a variety of matters such as who will do which domestic chores
- Wages, prices...

Example

• Consider the following situation. An individual, called Aruna, owns a house that she is willing to sell at a minimum price of \pounds 50,000.

Example

- Consider the following situation. An individual, called Aruna, owns a house that she is willing to sell at a minimum price of \pounds 50,000.
- Another individual, called Mohan, is willing to pay up to £ 70,000 for Aruna's house.
- If trade occurs, at a price that lies between £ 50,000 and £ 70,000, then both Aruna (the 'seller') and Mohan (the 'buyer') would become better of.
 - common interest to trade
 - they have conflicting interests over the price at which to trade

Example

- Consider the following situation. An individual, called Aruna, owns a house that she is willing to sell at a minimum price of \pounds 50,000.
- Another individual, called Mohan, is willing to pay up to £ 70,000 for Aruna's house.
- If trade occurs, at a price that lies between £ 50,000 and £ 70,000, then both Aruna (the 'seller') and Mohan (the 'buyer') would become better of.
 - common interest to trade
 - they have conflicting interests over the price at which to trade
- What would you suggest?

Nash bargaining solution

• A bargaining solution may be interpreted as a formula that determines a unique outcome for each bargaining situation in some class of bargaining situations.

Nash bargaining solution

- A bargaining solution may be interpreted as a formula that determines a unique outcome for each bargaining situation in some class of bargaining situations.
- Two players, A and B , bargain over the partition of a cake (or surplus) of size π (π > 0).
- The set of possible agreements is
 X = {(x_a, x_b) : 0 ≤ x_a ≤ π and x_b = π − x_a} where x_i is the
 share of the cake to player i.
- $U(x_i)$ is player i's from obtaining a share x_i of the cake.
- The utility pair (d_a, d_b) is disagreement point with utilities if players fail to reach agreement.

Nash bargaining solution

• The Nash bargaining solution (NBS) of the bargaining situation described above is the unique pair of utilities, denoted by (u_a^N, u_b^N) , that solves the following maximization problem:

$$\max_{u_a, u_b} (u_a - d_a)(u_b - d_b)$$

• Solve for linear utilities.

Solution example 1

Split the difference rule

• if utilities are linear in payoffs: $u_i(x_i) = x_i$

$$u_A^N = d_A + \frac{1}{2} \Big(\pi - d_A - d_B \Big)$$
 and $u_B^N = d_B + \frac{1}{2} \Big(\pi - d_A - d_B \Big)$

• How would you interpret this result?

Solution example

Risk aversion present

- One of the agents is risk averse: $u_a(x_a) = x_a^{\gamma}$ where $0 < \gamma < 1$ and $u_b(x_b) = x_b$
- If $d_a = d_b = 0$ then division is as follows:

$$x_A^N = rac{\gamma\pi}{1+\gamma}$$
 and $x_B^N = rac{\pi}{1+\gamma}$

• Intuition?

Asymmetric Nash bargaining

• Different bargaining power captured by parameter au :

$$\max_{u_a, u_b} (u_a - d_a)^{\tau} (u_b - d_b)^{1-\tau}$$

• If
$$au$$
 -> 1/2: symmetric equilibrium

Asymmetric Nash bargaining

• Different bargaining power captured by parameter au :

$$\max_{u_a, u_b} (u_a - d_a)^{\tau} (u_b - d_b)^{1-\tau}$$

- If $\tau \rightarrow 1/2$: symmetric equilibrium
- Examples of different bargaining power?

Quick practice

- Suppose that a worker with alternative wage offer of 10 EUR per hour can generate profit of 30 EUR per hour for a firm.
- The firm would like to hire this worker. If this worker rejects an offer, there is another worker who will accept for sure offer of 5 EUR, but his productivity is only 15 EUR per hour.

Quick practice

- Suppose that a worker with alternative wage offer of 10 EUR per hour can generate profit of 30 EUR per hour for a firm.
- The firm would like to hire this worker. If this worker rejects an offer, there is another worker who will accept for sure offer of 5 EUR, but his productivity is only 15 EUR per hour.
- Assume risk neutrality for both parties, $U(x_i) = x_i$
- What would be an outcome of symmetric Nash bargaining?
- What if bargaining power of the worker is two times greater than bargaining power of the firm (captured by τ)?

Main message from Nash bargaining

- If there is potential for trade, trade should happen.
- Outside options are not used in equilibrium but determine the outcome
- Reasons for non-equal split of the surplus:
 - risk aversion
 - bargaining power

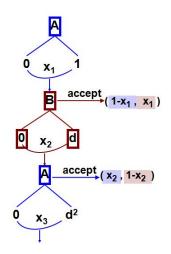
Rubinstein model

- Key feature of this model is that it specifies a rather attractive procedure of bargaining:
 - the players take turns to make offers to each other until agreement is secure
- This model has much intuitive appeal, since making offers and counteroffers lies at the heart of many real-life negotiations.
- One insight is that friction-less bargaining processes are indeterminate.
 - if the players do not incur any costs by haggling

Rubinstein model

- It seems intuitive that for the players to have some incentive to reach agreement they should find it costly to haggle.
- A player's bargaining power depends on the relative magnitude of the players' respective costs of haggling.
- This model provides a basic framework, which can be adapted, extended and modified for the purposes of application

Illustration



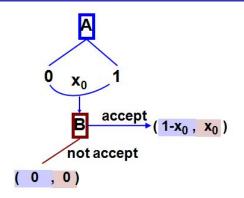
• Notice, that the size of the pie is shrinking after each round due to discounting.

Game Theory

Different approach

- Look for the sub-game perfect Nash equilibrium
- Variants of the game with different number of periods

T=0

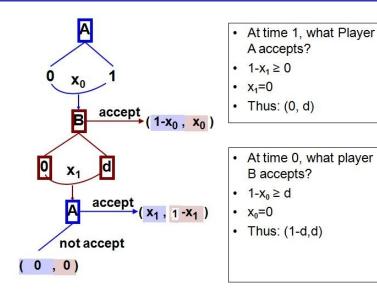


• At time 0, what player B accepts?

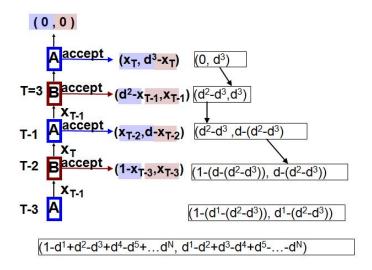
•
$$1 - x_0 \ge 0$$
, $x_0 = 0$

• Or $x_0 = \epsilon > 0$ with ϵ very small

T=1



More periods



Calculate it

•
$$(1 - d^1 + d^2 - d^3 + d^4 - d^5 + \dots d^N, d^1 - d^2 + d^3 - d^4 + d^5 - \dots - d^N)$$
 for $N \to \infty$

Calculate it

- $(1 d^1 + d^2 d^3 + d^4 d^5 + \dots d^N, d^1 d^2 + d^3 d^4 + d^5 \dots d^N)$ for $N \to \infty$
- Starting player (A) offers $1 \frac{1}{1+d} = \frac{d}{1+d}$ and another other player (B) accepts

•
$$(\pi_a, \pi_b) = (\frac{1}{1+d}, \frac{d}{1+d})$$

# of Offers	A's Equilibrium Utility	B's Equilibrium Utility
1	1	0
2	1-δ	δ
3	$1 - \delta + \delta^2$	$\delta - \delta^2$
4	$1-\delta+\delta^2-\delta^3$	$\delta - \delta^2 + \delta^3$
Infinite	1/(1 + δ)	$\delta/(1+\delta)$

Possible extensions

- Different discount factors
- Non-zero outside options

Unique subgame perfect equilibrium

• SPE that satisfies the following two properties

Property 1 (No Delay). Whenever a player has to make an offer, her equilibrium offer is accepted by the other player.

Property 2 (Stationarity). In equilibrium, a player makes the same offer whenever she has to make an offer.

Different discount rates

• In the limit, the shares η_a and η_b obtained by players A and B respectively in the unique SPE converge to $\eta_a \pi$ and $\eta_b \pi$ where

$$\eta_{a} = \frac{(1 - \delta_{b})}{1 - \delta_{a}\delta_{b}}$$
 and $\eta_{b} = \frac{\delta_{b}(1 - \delta_{a})}{1 - \delta_{a}\delta_{b}}$

- It seems reasonable to assume that the share of the cake obtained by a player in the unique SPE reflects her 'bargaining power'.
- Thus, a player's bargaining power is increasing in her discount rate, and decreasing in her opponent's discount rate.

Message

- Same discount factors
 - there exists a 'first-mover' advantage
- Different discount factors
 - relative magnitude of the players' discount rates critically influence the equilibrium partition of the cake

In a boxing match, the winner is the relatively stronger of the two boxers; the absolute strengths of the boxers are irrelevant to the outcome.

Message

- Same discount factors
 - there exists a 'first-mover' advantage
- Different discount factors
 - relative magnitude of the players' discount rates critically influence the equilibrium partition of the cake

In a boxing match, the winner is the relatively stronger of the two boxers; the absolute strengths of the boxers are irrelevant to the outcome.

 The basic alternating-offers game has a unique SPE, which is Pareto efficient.

Relationship to Nash's Bargaining solution

- It is straightforward to verify that the SPE payoff pair $(\eta_a \pi, \eta_b \pi)$ is identical to the asymmetric Nash bargaining solution of the bargaining problem with $\tau = \eta_a$.
- This remarkable result provides a strategic justification for Nash's bargaining solution.
- In particular, it provides answers to the questions of why, when and how to use Nash's bargaining solution.

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Národohospodářská fakulta VŠE v Praze

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-sa/4.0/</u> or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.