Energy Economics and Environment

Lecture 1

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

- Silvester van Koten
 - -<u>Silvester.VanKoten@VSE.CZ</u>
 - (does not always work)

- slvstr@gmail.com

• Materials on:

https://goo.gl/ QXujWw

• Slides, readings, some literature, homeworks

Lecture	
	A. The system
1 02.14	Fundamentals of electricity: The system 1
	(Blackouts, physics and synchronicity)
2 02.21	Fundamentals of electricity: The system 2
	(Physics and Present challenges)
	B. Peak-load pricing and Transmission
3 02.28	Basics of peak-load-pricing
	Transmission: Investment and Pricing 1
4 03.07	Transmission: Investment and Pricing 2
	C. Generation
5 03.14	Fundamentals of electricity: Generation
	D. Peak-load pricing and Generation
6 03.21	Generation: Investment and Pricing

Lecture	
7 03.28	Generation: Investment and Pricing -
	Interactive session in the lab RB337 (lee-
	vse.cz)
8 04.04	Generation: optimal investment, screen
	curves, load duration curve
9 04.11	Missing money & capacity payments and
	subsidies
	E. Exchange Market Trading and
	Power Trading
10 04.25	Trading: Interactive session in the lab
	RB337 (lee-vse.cz)
	F. Climate policy for electricity
11 05.02	Renewable energy sources:
	- costs & benefits
	- the costs of intermittency
	- LCOE and its drawbacks
	- the utility dead-spiral
12 05.09	- The Green paradox
	- Disasters, myths and miracles

The electrical system 1

Transmission

Literature for today

- Shively Ch.1, 2, 5, 6, 7.
- Biggar Ch. 2
- MIT: Appendix B

Power plants

Cost of Transmission

Cost of Transmission

2. Transmission lines

BBC WORLD NEWS

September 28th, 2003

Huge blackout cripples Italy!

Rome's "white night"

110 trains stopped

Thousands of people stuck

AP

The Swiss TSO operator asks the Italian TSO for countermeasures

TSO= Transmission System Operator

03:11

- **1. Transmission lines limits**
- 2. Dispatch
- 3. Frequency and synchronicity
- 4. Transmission shortage in the EU

Transmission lines limits

flashover

High voltage

Transmission lines limits

High voltage

Dramatically lowers losses to resistance

1 KV-> 10KV Loss falls to 1%

Factor 100

Transmission lines limits

1 KV-> 100KV

Loss falls to 0.01%

Factor 10.000

Why?

$E = I \cdot V^2$

Current (or flow)

Voltage (or pressure)

Loss a function of current, not of voltage

	ENISO-E OV	erview cli	
	Length of AC circuits		
	220–285 kV	141359	
	330 kV	9141	
	380/400kV	151272	
	750 kV	471	
	Sum	302243	
1		- (m. 42)	

Percentage losses by transmission in %?

TSEE

ล เมือ

2013: 1.6 %

https://www.entsoe.eu/Documents/Publications/ENTSO-E%20general%20publications/2013_ENTSO-E_Statistical_Factsheet_Updated_19_May_2014_.pdf

PELAGOI

 Table 1. Length of high-voltage lines, year 2000.

Voltage, kV	Length, thousand km	Share
1150	1.0	2.4%
800	0.4	1.0%
750	2.8	6.7%
500	30.5	72.8%
400	0.01	0.02%
330	7.2	17.2%
Total	41.91	100.0%

Source: State Council of the Russian Federation (2001).

The electricity market is based on nodal pricing

- Like many regional markets in US (PJM, ERCOT)
- EU mostly zonal system

Transmission lines limits

Power Line Clearance Zones Commercial Orchards

- Limit of a line varies...
 - The line itself
 - Maximum allowed sagging
 - Air temperature & wind
 - For example, Increase in temperature from 30C to 40C can lower the limit with 10%

VIDEO "1. Tree Flashover 10.03.09 (hq)"

1. Transmission lines limits 🧹

2. Dispatch

2 node AC network

Dispatch

Apply N-1 security standards

Fulfills (a weaker form) of N-1 security standards

Fulfills (a weaker form) of N-1 security standards

Fulfills (a weaker form) of N-1 security standards

The Swiss TSO operator asks the Italian TSO for countermeasures

Dispatch is done by national TSOs

Map of Interconnected Network - 400 and 220kV

- Line 220 kV
- Power plant
- Substatin

ČEPS

OT 10 ONOR 17:24 UT 0 ۵ SALDO Plan - 2984 59993 SALDO f str. 2955 50003 ODCHYLKA salda 31 UYROBA 12973 SACE 58 SPOTREBA 10112 SACE str. bezne - 189 RACE PE 121 SACE str. min + REZ PE 447 SALDO rozdil mer - 16 - REZ PE 373 SALDO 110 KU PRIM. REGULACE 90

- 1. Transmission lines limits 🧹
- 2. Dispatch 🗸
- 3. Frequency and synchronicity

Frequency and Synchronicity

Does a lamp in your house receive zero energy 100 times a second and is thus blinking?

•VID

• Wednesday 1_ light bulb.divx

Alternating Current lines (AC)

50 Herz is the frequency in Europe

A shortage of generation makes the frequency fall

Slight shortage

A surplus of generation makes the frequency rise

Lost of a nuclear unit (1300 MW) within the UCTE system

Time (s)

 http://www.dynamicdemand.co.uk/grid.h tm

 What is (one of) the biggest challenges for the Brittish TSO?

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

 This presentation is modernized version of Koten, S. Principles of transmission, applied to the eu transmission network. Presentation. 2011.

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Národohospodářská fakulta VŠE v Praze

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-sa/4.0/</u> or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA