Energy Economics and Environment

Lecture 5

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

The electrical system 2

Generation (power stations)

Literature for today

p.93-112 +117 (California)

Understanding Today's **Electricity Business**

By Bob Shively and John Ferrare

3101 Kintzley Court, Suite F Laporte, CO 80535 866.765.5432 www.enerdynamics.com

Shively Ch. 4.

Terminology (Electricity) Generator = Power Plant

Terminology

What is the difference between power and energy?

Terminology

Speed & Distance	Speed	Hours	Distance
	(KM/Hr)	(Hr)	(KM)
	12 KM/Hr		
	12 KM/Hr		
Power & Energy	Power	Hours	Energy
	(MW)	(Hr)	(MWh)
	200MW		
	200MW		

Speed & Distance	KM/hr	Hr	KM
Power & Energy			
	=MW		

Annual consumption in 2011 in GWh

Annual electricity generation in China, IEO2017 Reference case (2005-2040) trillion kilowatthours 2015

Annual electricity generation in China, IEO2017 Reference case (2005-2040) trillion kilowatthours 2015

EU: $3 \in \operatorname{cent/KWh} = 0.03 \in \operatorname{KWh} = 30 \in \operatorname{MWh}$

(MWh) = 0.13 / Wh = 130 / MWh

I have a nuclear with a capacity of 500MW (power). How much energy can this power plant produce in a year?

```
How many hours are in a year?
24*365=8760
(Q&D, +/- 10.000 minus 12%)
```

```
\approx500MW * 10.000 hours
\approx 5.000.000MWh
\approx 5.000GWh
\approx 5 TWh
=4.4 TWh
```

In the EU in 2012 there was a capacity of 120GW (power) in solar. This produced 100TWh in 2012. What is approximately the capacity factor of EU solar?

How many hours are in a year? 10.000 minus 12%

If it ran at full capacity (100% c.f.) it would have produced about 120 * 10.000GWh \approx 1.200.000 GWh \approx 1.200 TWh \approx 1.000 TWh (minus the 12%) But it produced 10 times less... Thus c.f. is \approx 10%

INTRO

Overview of generation types

Hydro-plant

Hydro comes in three variants

- 1. With dams (reservoir)
- 2. Pumped storage
- 3. Run-of-River

Hydro with dams (reservoir)

VID

Wednesday 2_Hydroelectic Power - How it Works (hq).mp4

АВАРИЯ НА САЯНО-ШУШЕНСКОЙ ГЭС

Sayano-Shushenskaya hydropower station accident

AND REAL PROPERTY AND INCOME.

ARE RESIDE

20.00

ส่งสายเมืองเมืองเมือง

Thumphan

Three Gorges Dam

Max Power: 22.5 GW – largest in the world

≈ 22 Nuclear Power Stations

Annual electricity generation in 2015 was 87 TWh.

What was +/- then the capacity factor in 2015?

≈ +/- 87/225

≈ +/- 40~45%

Hydro and Storage?
Hydro and Storage?

Pumped Storage Hydro

Pumped storage

Dinorwig - 10 GWh energy; 2 GW maximum power

• That is THE storage technology for electricity!

• Is it a lot?

• No, is tiny.

Annual consumption in 2011 in GWh

Run-of-river Hydro

Generator Turbine

Baseload

Nuclear plants

Nuclear Fission

Figure 30. Soviet-Designed Nuclear Power Plants

739927 (200564) 9.96

Projected nuclear electricity generation in selected countries (2010-40) trillion kilowatthours

eia

Nuclear Fusion

Experimental but breakthrough is imminent (since 1954)

"Our children will enjoy in their homes electrical energy too cheap to meter...

"famines will be known as matters of history"

Lewis Strauss, 1954 Chairman of the US Atomic Energy Commission

referring to the prospects of nuclear *fusion* (not fission).

Nuclear Fusion

Best nuclear fusion reactor has a net energy output of -30%

Do we have an example of an existing working fusion with net energy output somewhere?

Do we have an example of an existing working fusion with net energy output on earth?

2018.03.14 previous lecture

U.S. ELECTRIC POWER INDUSTRY NET GENERATION 2011

Large coal plants

Figure 2-10. Steam power plant.

Load cycling

LL1-lowest load at which design SH/RH temperatures can be maintained

LL2-current "advertised" low load

LL3-lowest load at which the unit can remain online

Germany to start up more coalfired power stations than at any time in the past 20 years

Combined heat & power (must-run)

Figure 5 • CHP share of total national power production

- Hard coal
- Brown coal
- Peat

- Internationally traded
 - Hard coal

- Not internationally traded:
 - Brown coal
 - Peat

Coal pollutes the air and emits a lot of CO2

Hourly Daily Monthly

Coal pollutes the air and emits a lot of CO2

AQI:

Gas burning plants

OCGT

CCGT

1999

http://iea-etsap.org/web/Highlights%20PDF/E02-gas_fired_power-GS-AD-gct%201.pdf

VID

Wednesday 2_Gas Turbine Basics (hq).mp4

GAS TURBINE COMBINED CYCLE

Irsching-5 in Bavaria, Germany (EON)

A gas-fired power station, Commissioned in 2010

"Germany needs flexible gas plants to underpin a greater share of renewable sources"

> German environment Minister Peter Altmaier

EON (now UNIPER/UNIPRO) has been trying to close Irsching-5 since 2015

Gas generators cannot make a profit in Germany

Malženice 430 MW CCGT, Slovakia Commissioned in January 2011

On July 15, 2013 EON (UNIPER) announced to mothball its CCGT in Malženice effective October 2013

Oil burning plants

Renewables

(not dispatchable)

Wind turbines

Solar panels

Renewables (dispatchable)

Biomass

Renewable energies

Concentrated solar power

US or EU?

https://www.lazard.com/perspective/levelized-cost-of-energy-2017/

Blue bars: Levelised costs at realised full load hours

Grey bars: Levelised costs at technically feasible full load hours

- (1) Analysis excludes integration (e.g., grid and conventional generation investment to overcome system intermittency) costs for intermittent technologies.
- (2) Low end represents single-axis tracking system. High end represents fixed-tilt design. Assumes 30 MW system in a high insolation jurisdiction (e.g., Southwest U.S.). Does not account for differences in heat coefficients within technologies, balance-of-system costs or other potential factors which may differ across select solar technologies or more specific geographies.
- (3) Low and high end represent a concentrating solar tower with 10-hour storage capability. Low end represents an illustrative concentrating solar tower built in South Australia.
- (4) Illustrative "PV Plus Storage" unit. PV and battery system (and related bidirectional inverter, power control electronics, etc.) sized to compare with solar thermal with 10-hour storage on capacity factor basis (52%). Assumes storage nameplate "usable energy" capacity of ~400 MWhdc, storage power rating of 110 MWac and ~200 MWac PV system. Implied output degradation of ~0.40%/year (assumes PV degradation of 0.5%/year and battery energy degradation of 1.5%/year, which includes calendar and cycling degradation). Battery round trip DC efficiency of 90% (including auxiliary losses). Storage opex of ~\$8/kWh-year and PV O&M expense of ~\$9.2/kW DC-year, with 20% discount applied to total opex as a result of synergies (e.g., fewer truck rolls, single team, etc.). Total capital costs of ~\$3,456/kW include PV plus battery energy storage system and selected other development c osts. Assumes 20year useful life, although in practice the unit may perform longer. Illustrative system located in Southwest U.S.

- (5) Diamond represents an illustrative solar thermal facility without storage capability.
- (6) Represents estimated implied midpoint of levelized cost of energy for offshore wind, assuming a capital cost range of \$2.36 \$4.50 per watt.
- (7) Represents distributed diesel generator with reciprocating engine. Low end represents 95% capacity factor (i.e., baseload generation in poor grid quality geographies or remote locations). High end represents 10% capacity factor (i.e., to overcome periodic blackouts). Assumes replacement capital cost of 65% of initial total capital cost every 25,000 operating hours.
- (8) Represents distributed natural gas generator with reciprocating engine. Low end represents 95% capacity factor (i.e., baseload generation in poor grid quality geographies or remote locations). High end represents 30% capacity factor (i.e., to overcome periodic blackouts). Assumes replacement capital cost of 65% of initial total capital cost every 60,000 operating hours.
- (9) Does not include cost of transportation and storage. Low and high end depicts an illustrative recent IGCC facility located in the U.S.
- (10) Does not reflect decommissioning costs or potential economic impact of federal loan guarantees or other subsidies. Low and high end depicts an illustrative nuclear plant using the AP1000 design.
- (11) Reflects average of Northern Appalachian Upper Ohio River Barge and Pittsburgh Seam Rail coal. High end incorporates 90% carbon capture and compression. Does not include cost of transportation and storage.

MARKETS & POLICY

A New Record: Renewables Make Up 78% of Germany's Power Consumption in an Afternoon

But coal isn't going away anytime soon.

by Julia Pyper July 31, 2015

http://www.greentechmedia.com/articles/read/germany-briefly-hit-new-record-for-renewable-energy-generation

Where the world gets its energy

0.06% Geothermal 0.3%

__Wind 1.1%

Solar

Biomass 1.3%

Oil

6%

Nuclear 14%

Coal 41%

Natural Gas 21%

> Hydro 16%

Russia's primary energy consumption, 2011

eia U.S. Energy Information Administration, Form EIA-860, Annual Generator Report

EU's 20-20-20 strategy for 2020

Regarding the question:

- "how much electricity or energy Germany produces by renewables/ zero-carbon sources?"
- Newest data: first 11 months of 2014
- Eurostats gives good data but with quite late (+/- 14 months)
- ISE Frauenhofer gives good up to date data on Germaney (<u>http://www.ise.fraunhofer.de/en/</u>) Fraunhofer Institute for Solar Energy Systems Number of politicized, questionable analyses (strongly promoting solar)

Source: Bruno Burger, Fraunhofer ISE, Data: Bundesnetzagentur http://www.ise.fraunhofer.de/en/renewable-energy-data/data-and-facts-about-pv

	Energy in TWh		
Uranium	83.3		
Lignite (BC)	129.3		
Hard Coal	90.7		
Gas	29.0		
Wind	42.6		
Solar	32.4		
Biomass	48.6		
Hydro	16.8		
	472.7		

Source: Bruno Burger, Fraunhofer ISE, Data: Bundesnetzagentur

http://www.ise.fraunhofer.de/en/rene wable-energy-data/data-and-facts-about-pv

	Energy in TWh			
Uranium	83.3	18%		
Lignite (BC)	129.3	27%		
Hard Coal	90.7	19%		
Gas	29	6%		
Wind	42.6	9%		
Solar	32.4	7%		
Biomass	48.6	10%		
Hydro	16.8	4%		
	472.7	100%		

Source: Bruno Burger, Fraunhofer ISE, Data: Bundesnetzagentur

http://www.ise.fraunhofer.de/en/renewable-energy-data/data-and-facts-about-pv

	Energy in		All	
	IWh		renewables	
Uranium	83.3	18%		
Lignite (BC)	129.3	27%		
Hard Coal	90.7	19%		
Gas	29	6%		
Wind	42.6	9%	9%	
Solar	32.4	7%	7%	
Biomass	48.6	10%	10%	
Hydro	16.8	4%	4%	
	472.7	100%	30%	

Source: Bruno Burger, Fraunhofer ISE, Data: Bundesnetzagentur

http://www.ise.fraunhofer.de/en/rene wable-energy-data/data-and-facts-about-pv

	Energy in		All	New	
	TWh		renewables	renewables	
Uranium	83.3	18%			
Lignite (BC)	129.3	27%			
Hard Coal	90.7	19%			
Gas	29	6%			
Wind	42.6	9%	9%	9%	
Solar	32.4	7%	7%	7%	
Biomass	48.6	10%	10%	10%	
Hydro	16.8	4%	4%		
	472.7	100%	30%	26%	

Source: Bruno Burger, Fraunhofer ISE, Data: Bundesnetzagentur http://www.ise.fraunhofer.de/en/renewable-energy-data/data-and-facts-about-pv

	Energy in		All	New	
	TWh		renewables	renewables	Solar+Wind
Uranium	83.3	18%			
Lignite (BC)	129.3	27%			
Hard Coal	90.7	19%			
Gas	29	6%			
Wind	42.6	9%	9%	9%	9%
Solar	32.4	7%	7%	7%	7%
Biomass	48.6	10%	10%	10%	
Hydro	16.8	4%	4%		
	472.7	100%	30%	26%	16%

Source: Bruno Burger, Fraunhofer ISE, Data: Bundesnetzagentur http://www.ise.fraunhofer.de/en/renewable-energy-data/data-and-facts-about-pv

	Energy in		All	New		
	TWh		renewables	renewables	Solar+Wind	Coal
Uranium	83.3	18%				
Lignite (BC)	129.3	27%				27%
Hard Coal	90.7	19%				19%
Gas	29	6%				
Wind	42.6	9%	9%	9%	9%	
Solar	32.4	7%	7%	7%	7%	
Biomass	48.6	10%	10%	10%		
Hydro	16.8	4%	4%			
	472.7	100%	30%	26%	16%	47%

2015-2017

Electricity production in 2015

year 2015

http://www.ise.fraunhofer.de/en/renewable-energy-data/data-and-facts-about-pv

	Energy in		All	New		
	TWh		renewables	renewables	Solar+Wind	Coal
Uranium	87.1	16%				
Lignite (BC)	139.4	25%				25%
Hard Coal	103.9	19%				19%
Gas	30	5%				
Wind	84.6	15%	15%	15%	15%	
Solar	36.8	7%	7%	7%	7%	
Biomass	56.6	10%	10%	10%		
Hydro	20.2	4%	4%			
	558.6	100%	35%	32%	22%	44%
Electricity production in 2016

year 2016

http://www.ise.fraunhofer.de/en/renewable-energy-data/data-and-facts-about-pv

	Energy in		All	New		
	TWh		renewables	renewables	Solar+Wind	Coal
Uranium	80	15%				
Lignite (BC)	134.8	25%				25%
Hard Coal	100	18%				18%
Gas	45.2	8%				
Wind	77.8	14%	14%	14%	14%	
Solar	37.5	7%	7%	7%	7%	
Biomass	49.3	9%	9%	9%		
Hydro	20.8	4%	4%			
	545.4	100%	34%	30%	21%	43 %

year 2017

Source: Bruno Burger, Fraunhofer ISE, Data: Bundesnetzagentur http://www.ise.fraunhofer.de/en/renewable-energy-data/data-and-facts-about-pv

	Energy in		All	New		
	TWh		renewables	renewables	Solar+Wind	Coal
Uranium	27.1	5%				
Lignite (BC)	133.7	27%				27%
Hard Coal	83.4	17%				17%
Gas	45.7	9%				
Wind	103.6	21%	21%	21%	21%	
Solar	38.4	8%	8%	8%	8%	
Biomass	47.7	10%	10%	10%		
Hydro	20.9	4%	4%			
	500.5	100%	42%	38%	28%	43 %

MARKETS & POLICY

A New Record: Renewables Make Up 78% of Germany's Power Consumption in an Afternoon

But coal isn't going away anytime soon.

by Julia Pyper July 31, 2015

http://www.greentechmedia.com/articles/read/germany-briefly-hit-new-record-for-renewable-energy-generation

German electricity wholesale market

November 2009

Germany's record high wind and solar output is 39 GW This is not representative of the rest of the year

RES shares in the EU-28 Member States

Source: EFA (based on Eurostat 2015b)

http://www.eea.europa.eu/publications/renewable-energy-in-europe-2016

Renewable electricity in the EU-28: breakdown by RES technologies

Technology	Final energy (ktoe)				
	2005	2012	2013	Proxy 2014	NREAP 2020
Hydropower excl. pumping (normalised)	29 582	29 822	29 987	30 171	31 786
Onshore wind (normalised)	5 784	16 110	18 189	20 110	30 303
Solid biomass	4 773	8 488	8 610	8 446	13 460
Solar photovoltaic	126	5 796	6 953	7 849	7 062
Biogas	1 101	3 994	4 550	4 627	5 493
Offshore wind (normalised)	174	966	1 201	1 377	11 740
Geothermal	464	496	510	535	943
Concentrated solar power	0	325	378	378	1 633
Bioliquids (compliant)	0	290	346	290	1 096
Tidal, wave and ocean energy	41	40	36	45	559
Total renewable electricity (normalised, compliant biofuels)	42 044	66 326	70 761	73 828	104 075
Total renewable electricity (normalised, including non-compliant biofuels)	42 196	66 348	70 784	73 906	104 075

Renewable heating and cooling in the EU-28

Technology Final energy (ktoe)					
	2005	2012	2013	Proxy 2014	NREAP 2020
Solid biomass	56 609	73 331	75 548	71 012	80 886
Renewable energy from heat pumps	2 239	6 897	7 385	8 134	12 289
Biogas	714	2 154	2 525	2 595	5 108
Solar thermal	702	1 833	1 947	2 045	6 455
Geothermal	559	609	658	697	2 646
Bioliquids (compliant)	0	239	228	228	4 416
Total renewable heat (compliant biofuels)	60 824	85 063	88 292	84 710	111 801
Total renewable heat (including non-compliant biofuels)	60 990	85 251	88 478	84 897	111 801

Renewable transport in the EU-28: biofuels

Technology	Final energy (ktoe)						
	2005	2012	2013	Proxy 2014	NREAP 2020		
Biodiesels (all)	2 565	11 492	10 293	11 076	20 920		
Biogasoline (all)	560	2 858	2 717	2 700	7 324		
Other biofuels (all)	155	117	126	357	746		
Compliant biofuels	3 240	11 595	11 932	12 841	28 989		
All biofuels	3 279	14 467	13 135	14 133	28 989		

RES shares in the EU-28 Member States

Germany to start up more coalfired power stations than at any time in the past 20 years

Irsching-5 in Bavaria, Germany (EON)

A gas-fired power station, Commissioned in 2010

"Germany needs flexible gas plants to underpin a greater share of renewable sources"

> German environment Minister Peter Altmaier

EON (now UNIPER/UNIPRO) has been trying to close Irsching-5 since 2015

Gas generators cannot make a profit in Germany

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Národohospodářská fakulta VŠE v Praze

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-sa/4.0/</u> or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA